Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 457327, 9 pages
http://dx.doi.org/10.4061/2011/457327
Review Article

Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration

1Department of Medicine, College of Veterinary Science and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
2Division of Medicine, Indian Veterinary Research Institute, Izatnagar 243122, India
3Central Institute for Research on Goats, Makhdoom 281122, UP, India

Received 12 January 2011; Accepted 21 January 2011

Academic Editor: Cristina Castillo Rodríguez

Copyright © 2011 R. C. Patra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Bae, C. Gennings, W. H. Carter, R. S. H. Yang, and J. A. Campain, “Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes,” Toxicological Sciences, vol. 63, no. 1, pp. 132–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Phillips, Z. Gyori, and B. Kovács, “The effect of adding cadmium and lead alone or in combination to the diet of pigs on their growth, carcase composition and reproduction,” Journal of the Science of Food and Agriculture, vol. 83, no. 13, pp. 1357–1365, 2003. View at Publisher · View at Google Scholar
  3. R. C. Patra, D. Swarup, R. Naresh, P. Kumar, P. Shekhar, and R. Ranjan, “Cadmium level in blood and milk from animals reared around different polluting sources in India,” Bulletin of Environmental Contamination and Toxicology, vol. 74, no. 6, pp. 1092–1097, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Swarup, R. C. Patra, R. Naresh, P. Kumar, and P. Shekhar, “Blood lead levels in lactating cows reared around polluted localities; transfer of lead into milk,” Science of the Total Environment, vol. 347, no. 1–3, pp. 106–110, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. C. Patra, D. Swarup, R. Naresh et al., “Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas,” Ecotoxicology and Environmental Safety, vol. 66, no. 1, pp. 127–131, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. I. A. Okada, A. M. Sakuma, F. D. Maid, S. Dovidemskas, and O. Zenebon, “Evaluation of lead and cadmium in milk due to environmental contamination in Paraiba valley region of South Estern Brazil,” Raissade-Saude-Publica, vol. 31, pp. 140–143, 1997. View at Google Scholar
  7. R. J. Irwin, M. Van Mouwerik, L. Stevend, M. D. Seese, and W. Basham, “Environmental contaminants encyclopedia,” National Park Service, Water Resources Division, Fort Collins, Colorado. Distributed within the federal government as electronic document, February 2003.
  8. R. A. Goyer and M. G. Cherian, “Ascorbic acid and EDTA treatment of lead toxicity in rats,” Life Sciences, vol. 24, no. 5, pp. 433–438, 1979. View at Google Scholar · View at Scopus
  9. H. A. Ruff, M. E. Markowitz, P. E. Bijur, and J. F. Rosen, “Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children,” Environmental Health Perspectives, vol. 104, no. 2, pp. 180–185, 1996. View at Google Scholar · View at Scopus
  10. J. Dressier, K. A. Kim, T. Chakraborti, and G. Goldstein, “Molecular mechanisms of lead neurotoxicity,” Neurochemical Research, vol. 24, no. 4, pp. 595–600, 1999. View at Google Scholar · View at Scopus
  11. P. E. De Silva, “Determination of lead in plasma and studies on its relationship to lead in erythrocytes,” Brazilian Journal of Indigenous Medicine, vol. 38, pp. 209–217, 1981. View at Google Scholar
  12. F. Khalil-Manesh, H. C. Gonick, E. W. J. Weiler, B. Prins, M. A. Weber, and R. E. Purdy, “Lead-induced hypertension: possible role of endothelial factors,” American Journal of Hypertension, vol. 6, no. 9, pp. 723–729, 1993. View at Google Scholar · View at Scopus
  13. D. J. Humphreys, “Effects of exposure to excessive quantities of lead on animals,” British Veterinary Journal, vol. 147, no. 1, pp. 18–30, 1991. View at Google Scholar · View at Scopus
  14. R. P. Sharma and J. C. Street, “Public health aspects of toxic heavy metals in animal feeds,” Journal of the American Veterinary Medical Association, vol. 177, no. 2, pp. 149–153, 1980. View at Google Scholar · View at Scopus
  15. W. N. Rom, “Effects of lead on reproduction,” in Proceedings of the Workshop on Methodology for Assessing Reproductive Hazards in the Workplace, P. F. Infante and M. S. Legator, Eds., pp. 33–42, Washington, DC, USA, 1980.
  16. I. Lancranjan, H. I. Popescu, O. GAvǎnescu, I. Klepsch, and M. Serbǎnescu, “Reproductive ability of workmen occupationally exposed to lead,” Archives of Environmental Health, vol. 30, no. 8, pp. 396–401, 1975. View at Google Scholar · View at Scopus
  17. R. C. Patra, D. Swarup, and S. K. Dwivedi, “Antioxidant effects of α tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats,” Toxicology, vol. 162, no. 2, pp. 81–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Fu, X. B. Ye, J. L. Zhu et al., “Oxidative stress in lead exposed workers,” in IARC Gargnano Conference, p. 2.3, 1999.
  19. S. Sarkar, P. Yadav, and D. Bhatnagar, “Lipid peroxidative damage on cadmium exposure and alterations in antioxidant system in rat erythrocytes: a study with relation to time,” BioMetals, vol. 11, no. 2, pp. 153–157, 1998. View at Publisher · View at Google Scholar
  20. R. C. Patra, D. Swarup, and S. K. Senapat, “Effects of cadmium on lipid peroxides and superoxide dismutasein hepatic, renal and testicular tissue of rats,” Veterinary and Human Toxicology, vol. 41, no. 2, pp. 65–67, 1999. View at Google Scholar
  21. B. Halliwell and J. M. C. Gutteridge, “Protection against oxidants in biologyogical systems: the superoxide theory of oxygen toxicity,” in Free Radical in Biology and Medicine, B. Halliwell and J. M. C. Gutteridge, Eds., pp. 86–123, Clarendon Press, Oxford, UK, 1989. View at Google Scholar
  22. S. J. Yiin and T. H. Lin, “Lead-catalyzed peroxidation of essential unsaturated fatty acid,” Biological Trace Element Research, vol. 50, no. 2, pp. 167–172, 1995. View at Google Scholar · View at Scopus
  23. S. O. Knowles and W. E. Donaldson, “Dietary modification of lead toxicity: effects on fatty acid and eicosanoid metabolism in chicks,” Comparative Biochemistry and Physiology C, vol. 95, no. 1, pp. 99–104, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. L. J. Lawton and W. E. Donaldson, “Lead-induced tissue fatty acid alterations and lipid peroxidation,” Biological Trace Element Research, vol. 28, no. 2, pp. 83–97, 1991. View at Google Scholar · View at Scopus
  25. V. N. Adonaylo and P. I. Oteiza, “Pb promotes lipid oxidation and alterations in membrane physical properties,” Toxicology, vol. 132, no. 1, pp. 19–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. Farant and D. C. Wigfield, “Biomonitoring lead exposure with δ-aminolevulinate dehydratase (ALA-D) activity ratios,” International Archives of Occupational and Environmental Health, vol. 51, no. 1, pp. 15–24, 1982. View at Google Scholar · View at Scopus
  27. M. Hermes-Lima, V. G. R. Valle, A. E. Vercesi, and E. J. H. Bechara, “Damage to rat liver mitochondria promoted by δ-aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphyria and lead-poisoning,” Biochimica et Biophysica Acta, vol. 1056, no. 1, pp. 57–63, 1991. View at Google Scholar
  28. M. Hermes-Lima, “How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria?” Free Radical Biology and Medicine, vol. 19, no. 3, pp. 381–390, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. E. J. H. Bechara, “Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid,” Brazilian Journal of Medical and Biological Research, vol. 29, no. 7, pp. 841–851, 1996. View at Google Scholar · View at Scopus
  30. T. Douki, J. Onuki, M. H. G. Medeiros, E. J. H. Bechara, J. Cadet, and P. D. Mascio, “DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid,” Chemical Research in Toxicology, vol. 11, no. 2, pp. 150–157, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. T. Douki, J. Onuki, M. H. G. Medeiros, E. J. H. Bechara, J. Cadet, and P. Di Mascio, “Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid,” FEBS Letters, vol. 428, no. 1-2, pp. 93–96, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. T. G. Rossman, “Cloning genes whose levels of expression are altered by metals: implications for human health research,” American Journal of Industrial Medicine, vol. 38, no. 3, pp. 335–339, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Quintanilla-Vega, D. Hoover, W. Bal, E. K. Silbergeld, M. P. Waalkes, and L. D. Anderson, “Lead effects on protamine-DNA binding,” American Journal of Industrial Medicine, vol. 38, no. 3, pp. 324–329, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. B. L. Vallee and D. D. Ulmer, “Biochemical effects of mercury, cadmium, and lead,” Annual Review of Biochemistry, vol. 41, no. 10, pp. 91–128, 1972. View at Google Scholar · View at Scopus
  35. J. M. Hsu, “Lead toxicity as related to glutathione metabolism,” Journal of Nutrition, vol. 111, no. 1, pp. 26–33, 1981. View at Google Scholar · View at Scopus
  36. Y. Ito, Y. Niiya, and H. Kurita, “Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead,” International Archives of Occupational and Environmental Health, vol. 56, no. 2, pp. 119–127, 1985. View at Google Scholar · View at Scopus
  37. C. McGowan and W. E. Donaldson, “Changes in organ nonprotein sulfhydryl and glutathione concentrations during acute and chronic administration of inorganic lead to chicks,” Biological Trace Element Research, vol. 10, no. 1, pp. 37–46, 1986. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Chiba, A. Shinohara, K. Matsushita, H. Watanabe, and Y. Ihaba, “Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood,” Tohoku Journal of Experimental Medicine, vol. 178, no. 1, pp. 49–62, 1996. View at Google Scholar
  39. N. A. Lachant, A. Tomoda, and K. R. Tanaka, “Inhibition of the pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning,” Blood, vol. 63, no. 3, pp. 518–524, 1984. View at Google Scholar · View at Scopus
  40. H. Gurer, H. Ozgunes, R. Neal, D. R. Spitz, and N. Ercal, “Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats,” Toxicology, vol. 128, no. 3, pp. 181–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Cocco, S. Salis, M. Anni, M. E. Cocco, C. Flore, and A. Ibba, “Effects of short term occupational exposure to lead on erythrocyte glucose-6-phosphate dehydrogenase activity and serum cholesterol,” Journal of Applied Toxicology, vol. 15, no. 5, pp. 375–378, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Gurer and N. Ercal, “Can antioxidants be beneficial in the treatment of lead poisoning?” Free Radical Biology and Medicine, vol. 29, no. 10, pp. 927–945, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. B. B. Gelman, I. A. Michaelson, and J. S. Bus, “The effect of lead on oxidative hemolysis and erythrocyte defense mechanisms in the rat,” Toxicology and Applied Pharmacology, vol. 45, no. 1, pp. 119–129, 1978. View at Google Scholar · View at Scopus
  44. G. N. Schrauzer, “Effects of selenium antagonists on cancer susceptibility: new aspects of chronic heavy metal toxicity,” Journal of UOEH, vol. 9, pp. 208–215, 1987. View at Google Scholar · View at Scopus
  45. A. I. Othman and M. A. El Missiry, “Role of selenium against lead toxicity in male rats,” Journal of Biochemical and Molecular Toxicology, vol. 12, no. 6, pp. 345–349, 1998. View at Google Scholar · View at Scopus
  46. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  47. F. Thévenod and J. M. Friedmann, “Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo- /lysosomal proteolytic pathways,” FASEB Journal, vol. 13, no. 13, pp. 1751–1761, 1999. View at Google Scholar · View at Scopus
  48. A. Piqueras, E. Olmos, J. R. Martínez-Solano, and E. Hellín, “Cd-induced oxidative burst in tobacco BY2 cells: time course, subcellular location and antioxidant response,” Free Radical Research, vol. 31, pp. S33–S38, 1999. View at Google Scholar · View at Scopus
  49. S. J. Stohs, D. Bagchi, E. Hassoun, and M. Bagchi, “Oxidative mechanisms in the toxicity of chromium and cadmium ions,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 20, no. 2, pp. 77–88, 2001. View at Google Scholar · View at Scopus
  50. W. Wätjen and D. Beyersmann, “Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress,” BioMetals, vol. 17, no. 1, pp. 65–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. C. O. Ikediobi, V. L. Badisa, L. T. Ayuk-Takem, L. M. Latinwo, and J. West, “Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells,” International Journal of Molecular Medicine, vol. 14, no. 1, pp. 87–92, 2004. View at Google Scholar · View at Scopus
  52. C. M. Shih, W. C. Ko, J. S. Wu et al., “Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts,” Journal of Cellular Biochemistry, vol. 91, no. 2, pp. 384–397, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. E. Figueiredo-Pereira, S. Yakushin, and G. Cohen, “Disruption of the intracellular sulfhydryl homeostasis by cadmium- induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 12703–12709, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. K. W. Hew, W. A. Ericson, and M. J. Welsh, “A single low cadmium dose causes failure of spermiation in the rat,” Toxicology and Applied Pharmacology, vol. 121, no. 1, pp. 15–21, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. Xu and X. Z. Jiang, “Male reproductive toxicity of cadmium,” Chinese Journal of Public Health, vol. 15, pp. 17–18, 1996. View at Google Scholar
  56. N. M. Biswas, R. Sengupta, G. R. Chatopadhyay, A. Choudhury, and M. Sarkar, “Effect of ethanol on cadmium-induced testicular toxicity in male rats,” Reproductive Toxicology, vol. 15, pp. 699–704, 2001. View at Google Scholar
  57. J. W. Laskey and P. V. Phelps, “Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production,” Toxicology and Applied Pharmacology, vol. 108, no. 2, pp. 296–306, 1991. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Lafuente, N. Márquez, M. Pérez-Lorenzo, D. Pazo, and A. I. Esquifino, “Pubertal and postpubertal cadmium exposure differentially affects the hypothalamic-pituitary-testicular axis function in the rat,” Food and Chemical Toxicology, vol. 38, no. 10, pp. 913–923, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. P. I. Oteiza, V. N. Adonaylo, and C. L. Keen, “Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake,” Toxicology, vol. 137, no. 1, pp. 13–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Klimczak, J. M. Wisniewska-Knypl, and J. Kolakowski, “Stimulation of lipid peroxidation and heme oxygenase activity with inhibition of cytochrome P-450 monooxygenase in the liver of rats repeatedly exposed to cadmium,” Toxicology, vol. 32, no. 3, pp. 267–276, 1984. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Sugawara and C. Sugawara, “Selenium protection against testicular lipid peroxidation from cadmium,” Journal of Applied Biochemistry, vol. 6, no. 4, pp. 199–204, 1984. View at Google Scholar · View at Scopus
  62. D. Manca, A. C. Ricard, B. Trottier, and G. Chevalier, “Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride,” Toxicology, vol. 67, no. 3, pp. 303–323, 1991. View at Google Scholar · View at Scopus
  63. T. Koizumi and Z. G. Li, “Role of oxidative stress in single-dose, cadmium-induced testicular cancer,” Journal of Toxicology and Environmental Health, vol. 37, no. 1, pp. 25–36, 1992. View at Google Scholar · View at Scopus
  64. D. Bagchi, P. J. Vuchetich, M. Bagchi et al., “Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats,” Free Radical Biology and Medicine, vol. 22, no. 3, pp. 471–478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Valko, M. Izakovic, M. Mazur, C. J. Rhodes, and J. Telser, “Role of oxygen radicals in DNA damage and cancer incidence,” Molecular and Cellular Biochemistry, vol. 266, no. 1-2, pp. 37–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. D. J. Price and J. G. Joshi, “Ferritin. Binding of beryllium and other divalent metal ions,” Journal of Biological Chemistry, vol. 258, no. 18, pp. 10873–10880, 1983. View at Google Scholar · View at Scopus
  67. A. Szuster-Ciesielska, A. Stachura, M. Słotwińska et al., “The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures,” Toxicology, vol. 145, no. 2-3, pp. 159–171, 2000. View at Google Scholar · View at Scopus
  68. M. Watanabe, K. Henmi, K. Ogawa, and T. Suzuki, “Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis,” Comparative Biochemistry and Physiology, vol. 134, no. 2, pp. 227–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Wang, J. Fang, S. S. Leonard, and K. M. K. Rao, “Cadmium inhibits the electron transfer chain and induces reactive oxygen species,” Free Radical Biology and Medicine, vol. 36, no. 11, pp. 1434–1443, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. P. C. Hsu, C. C. Hsu, M. Y. Liu, L. Y. Chen, and Y. L. Guo, “Lead-induced changes in spermatozoa function and metabolism,” Journal of Toxicology and Environmental Health A, vol. 55, no. 1, pp. 45–64, 1998. View at Google Scholar · View at Scopus
  71. A. G. Vij, N. K. Satija, and S. J. S. Flora, “Lead induced disorders in hematopoietic and drug metabolizing enzyme system and their protection by ascorbic acid supplementation,” Biomedical and Environmental Sciences, vol. 11, no. 1, pp. 7–14, 1998. View at Google Scholar
  72. S. J. S. Flora and S. K. Tandon, “Preventive and therapeutic effects of thiamine, ascorbic acid and their combination in lead intoxication,” Acta Pharmacologica et Toxicologica, vol. 58, no. 5, pp. 374–378, 1986. View at Google Scholar
  73. W. L. West, E. M. Knight, C. H. Edwards et al., “Maternal low level lead and pregnancy outcomes,” Journal of Nutrition, vol. 124, no. 6, pp. 981–986, 1994. View at Google Scholar · View at Scopus
  74. M. Dhawan, D. N. Kachru, and S. K. Tandon, “Influence of thiamine and ascorbic acid supplementation on the antidotal efficacy of thiol chelators in experimental lead intoxication,” Archives of Toxicology, vol. 62, no. 4, pp. 301–304, 1988. View at Google Scholar · View at Scopus
  75. J. A. Simon and E. S. Hudes, “Relationship of ascorbic acid to blood lead levels,” Journal of the American Medical Association, vol. 281, no. 24, pp. 2289–2293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. E. B. Dawson and W. A. Harris, “Effect of ascorbic acid supplementation on blood lead levels,” Journal of the American College of Nutrition, vol. 16, p. 480, 1997. View at Google Scholar
  77. R. Lauwerys, H. Roels, and J. P. Buchet, “The influence of orally-administered vitamin C or zinc on the absorption of and the biological response to lead,” Journal of Occupational Medicine, vol. 25, no. 9, pp. 668–678, 1983. View at Google Scholar
  78. H. Weiser and M. Vecchi, “Stereoisomers of α-tocopheryl acetate. II. Biopotencies of all eight stereoisomers, individually or in mixtures, as determined by rat resorption-gestation tests,” International Journal for Vitamin and Nutrition Research, vol. 52, no. 3, pp. 351–370, 1982. View at Google Scholar · View at Scopus
  79. A. J. Sheppard, J. A. T. Pennington, and J. L. Weihrauch, “Analysis and distribution of vitamin E in vegetable oils and foods,” in Vitamin E in Health and Disease, L. Packer and J. Fuchs, Eds., pp. 9–13, Marcel-Dekker, New York, NY, USA, 1993. View at Google Scholar
  80. L. Packer, “Protective role of vitamin E in biological systems,” American Journal of Clinical Nutrition, vol. 53, no. 4, pp. 1050S–1055S, 1991. View at Google Scholar · View at Scopus
  81. A. Azzi, D. Boscoboinik, and C. Hensey, “The protein kinase C family,” European Journal of Biochemistry, vol. 208, no. 3, pp. 547–557, 1992. View at Publisher · View at Google Scholar · View at Scopus
  82. S. S. Chaurasia and A. Kar, “Protective effects of vitamin E against lead-induced deterioration of membrane associated type-I iodothyronine 5'-monodeiodinase (5'D-I) activity in male mice,” Toxicology, vol. 124, no. 3, pp. 203–209, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. G. R. Buettner, “The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate,” Archives of Biochemistry and Biophysics, vol. 300, no. 2, pp. 535–543, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. B. Frei, “Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage,” American Journal of Clinical Nutrition, vol. 54, no. 6, pp. 1113–1118, 1991. View at Google Scholar · View at Scopus
  85. A. Telfer, S. M. Bishop, D. Phillips, and J. Barber, “Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique,” Journal of Biological Chemistry, vol. 269, no. 18, pp. 13244–13253, 1994. View at Google Scholar · View at Scopus
  86. J. A. Mares-Perlman, W. E. Brady, R. Klein et al., “Serum antioxidants and age-related macular degeneration in a population-based case-control study,” Archives of Ophthalmology, vol. 113, no. 12, pp. 1518–1523, 1995. View at Google Scholar · View at Scopus
  87. E. Giovannucci and S. K. Clinton, “Tomatoes, lycopene, and prostate cancer,” Proceedings of the Society for Experimental Biology and Medicine, vol. 218, no. 2, pp. 129–139, 1998. View at Google Scholar · View at Scopus
  88. G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease,” New England Journal of Medicine, vol. 334, no. 18, pp. 1150–1155, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. A. Mortensen, L. H. Skibsted, and T. G. Truscott, “The interaction of dietary carotenoids with radical species,” Archives of Biochemistry and Biophysics, vol. 385, no. 1, pp. 13–19, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. D. Shastri, M. Kumar, and A. Kumar, “Modulation of lead toxicity by Spirulina fusiformis,” Phytotherapy Research, vol. 13, no. 3, pp. 258–260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Machartova, J. Racek, J. Kohout, V. Senft, and L. Trefil, “Effect of antioxidant therapy on indicators of free radical activity in workers at risk of lead exposure,” Vnitrni Lekarstvi, vol. 46, pp. 444–446, 2000. View at Google Scholar
  92. A. Mortensen and L. H. Skibsted, “Relative stability of carotenoid radical cations and homologue tocopheroxyl radicals. A real time kinetic study of antioxidant hierarchy,” FEBS Letters, vol. 417, no. 3, pp. 261–266, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. S. J. S. Flora, V. K. Jain, J. R. Behari, and S. K. Tandon, “Protective role of trace metals in lead intoxication,” Toxicomanies, vol. 13, no. 1-2, pp. 51–56, 1982. View at Google Scholar · View at Scopus
  94. J. H. Kagi and B. L. Vallee, “Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties,” The Journal of biological chemistry, vol. 236, pp. 2435–2442, 1961. View at Google Scholar · View at Scopus
  95. R. Papaioannou, A. Sohler, and C. C. Pfeiffer, “Reduction of blood lead levels in battery workers by zinc and vitamin C,” Journal of Orthomolecular Psychiatry, vol. 7, no. 2, pp. 94–106, 1978. View at Google Scholar · View at Scopus
  96. S. J. S. Flora, S. Singh, and S. K. Tandon, “Thiamine and zinc in prevention or therapy of lead intoxication,” Journal of International Medical Research, vol. 17, no. 1, pp. 68–75, 1989. View at Google Scholar · View at Scopus
  97. S. J. S. Flora and S. K. Tandon, “Beneficial effects of zinc supplementation during chelation treatment of lead intoxication in rats,” Toxicology, vol. 64, no. 2, pp. 129–139, 1990. View at Google Scholar · View at Scopus
  98. N. Batra, B. Nehru, and M. P. Bansal, “The effect of zinc supplementation on the effects of lead on the rat testis,” Reproductive Toxicology, vol. 12, no. 5, pp. 535–540, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. C. J. Frederickson, “Neurobiology of zinc and zinc-containing neurons,” International review of neurobiology, vol. 31, pp. 145–238, 1989. View at Google Scholar · View at Scopus
  100. S. R. Powell, “The antioxidant properties of zinc,” Journal of Nutrition, vol. 130, no. 5, pp. 1447s–1454s, 2000. View at Google Scholar · View at Scopus
  101. A. Ozturk, A. K. Baltaci, R. Mogulkoc et al., “Effects of zinc deficiency and supplementation on malondialdehyde and glutathione levels in blood and tissues of rats performing swimming exercise,” Biological Trace Element Research, vol. 94, no. 2, pp. 157–166, 2003. View at Publisher · View at Google Scholar · View at PubMed
  102. G. Ozdemir and F. Inanc, “Zinc may protect remote ocular injury caused by intestinal ischemia reperfusion in rats,” Tohoku Journal of Experimental Medicine, vol. 206, no. 3, pp. 247–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Sato and I. Bremner, “Oxygen free radicals and metallothionein,” Free Radical Biology and Medicine, vol. 14, no. 3, pp. 325–337, 1993. View at Publisher · View at Google Scholar · View at Scopus
  104. A. A. Shaheen and A. A. El-Fattah, “Effect of dietary zinc on lipid peroxidation, glutathione, protein levels and superoxide dismutase activity in rat tissues,” The International Journal of Biochemistry & Cell Biology, vol. 27, pp. 89–95, 1995. View at Google Scholar
  105. E. Bonda, T. Włostowski, and A. Krasowska, “Testicular toxicity induced by dietary cadmium is associated with decreased testicular zinc and increased hepatic and renal metallothionein and zinc in the bank vole (Clethrionomys glareolus),” BioMetals, vol. 17, no. 6, pp. 615–624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Koizumi and M. P. Waalkes, “Effects of zinc on the distribution and toxicity of cadmium in isolated interstitial cells of the rat testis,” Toxicology, vol. 56, no. 2, pp. 137–146, 1989. View at Google Scholar · View at Scopus
  107. A. Valenzuela, J.-M. Lefauconnier, J. Chaudiere, and J.-M. Bourre, “Effects of lead acetate of cerebral glutathione peroxidase and catalase in the suckling rat,” NeuroToxicology, vol. 10, no. 1, pp. 63–70, 1989. View at Google Scholar
  108. F. Atroshi, A. Rizzo, I. Biese et al., “Fumonisin B1-induced DNA damage in rat liver and spleen: effects of pretreatment with coenzyme Q10, L-carnitine, α-tocopherol and selenium,” Pharmacological Research, vol. 40, no. 6, pp. 459–467, 1999. View at Publisher · View at Google Scholar · View at PubMed
  109. R. A. Kowluru, R. L. Engerman, and T. S. Kern, “Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy,” Free Radical Research, vol. 32, no. 1, pp. 67–74, 2000. View at Google Scholar · View at Scopus