Table of Contents Author Guidelines Submit a Manuscript
Wireless Communications and Mobile Computing
Volume 2017, Article ID 1049141, 11 pages
https://doi.org/10.1155/2017/1049141
Research Article

Distributed 3D Source Localization from 2D DOA Measurements Using Multiple Linear Arrays

Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Correspondence should be addressed to Antonio Canclini; ti.imilop@inilcnac.oinotna

Received 17 May 2017; Accepted 11 September 2017; Published 25 October 2017

Academic Editor: Paolo Barsocchi

Copyright © 2017 Antonio Canclini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This manuscript addresses the problem of 3D source localization from direction of arrivals (DOAs) in wireless acoustic sensor networks. In this context, multiple sensors measure the DOA of the source, and a central node combines the measurements to yield the source location estimate. Traditional approaches require 3D DOA measurements; that is, each sensor estimates the azimuth and elevation of the source by means of a microphone array, typically in a planar or spherical configuration. The proposed methodology aims at reducing the hardware and computational costs by combining measurements related to 2D DOAs estimated from linear arrays arbitrarily displaced in the 3D space. Each sensor measures the DOA in the plane containing the array and the source. Measurements are then translated into an equivalent planar geometry, in which a set of coplanar equivalent arrays observe the source preserving the original DOAs. This formulation is exploited to define a cost function, whose minimization leads to the source location estimation. An extensive simulation campaign validates the proposed approach and compares its accuracy with state-of-the-art methodologies.