Table of Contents Author Guidelines Submit a Manuscript
Wireless Communications and Mobile Computing
Volume 2017, Article ID 2986423, 16 pages
https://doi.org/10.1155/2017/2986423
Research Article

Wireless Brain-Robot Interface: User Perception and Performance Assessment of Spinal Cord Injury Patients

1Biomedical Electronics Robotics & Devices (BERD) Group, Lab of Medical Physics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
21st Department of Neurosurgery, “AHEPA” University General Hospital, Aristotle University of Thessaloniki (AUTH), 54636 Thessaloniki, Greece
3Robotics Laboratory, Computer Science Department, American College of Thessaloniki (ACT), 55535 Thessaloniki, Greece

Correspondence should be addressed to Alkinoos Athanasiou; rg.htua@sooniklahta

Received 25 August 2017; Accepted 10 December 2017; Published 31 December 2017

Academic Editor: Kyriaki Kalimeri

Copyright © 2017 Alkinoos Athanasiou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Patients suffering from life-changing disability due to Spinal Cord Injury (SCI) increasingly benefit from assistive robotics technology. The field of brain-computer interfaces (BCIs) has started to develop mature assistive applications for those patients. Nonetheless, noninvasive BCIs still lack accurate control of external devices along several degrees of freedom (DoFs). Unobtrusiveness, portability, and simplicity should not be sacrificed in favor of complex performance and user acceptance should be a key aim among future technological directions. In our study 10 subjects with SCI (one complete) and 10 healthy controls were recruited. In a single session they operated two anthropomorphic 8-DoF robotic arms via wireless commercial BCI, using kinesthetic motor imagery to perform 32 different upper extremity movements. Training skill and BCI control performance were analyzed with regard to demographics, neurological condition, independence, imagery capacity, psychometric evaluation, and user perception. Healthy controls, SCI subgroup with positive neurological outcome, and SCI subgroup with cervical injuries performed better in BCI control. User perception of the robot did not differ between SCI and healthy groups. SCI subgroup with negative outcome rated Anthropomorphism higher. Multi-DoF robotics control is possible by patients through commercial wireless BCI. Multiple sessions and tailored BCI algorithms are needed to improve performance.