Table of Contents Author Guidelines Submit a Manuscript
Wireless Communications and Mobile Computing
Volume 2017 (2017), Article ID 6834053, 16 pages
https://doi.org/10.1155/2017/6834053
Research Article

Data Dissemination Based on Fuzzy Logic and Network Coding in Vehicular Networks

1College of Information Engineering, Capital Normal University, Beijing 100048, China
2Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA

Correspondence should be addressed to Wenlong Chen; nc.ude.unc@gnolnewnehc

Received 31 March 2017; Revised 20 July 2017; Accepted 3 August 2017; Published 10 September 2017

Academic Editor: Petros Nicopolitidis

Copyright © 2017 Xiaolan Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hu, Z. Zhong, M. Ni, and A. Baiocchi, “Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks,” Sensors (Switzerland), vol. 16, no. 11, article 1834, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Tang, J. Pu, K. Ma, and Z. Xiong, “Cooperative transmission control scheme using erasure coding for vehicular delay-tolerant networks,” Journal of Supercomputing, vol. 68, no. 3, pp. 1462–1486, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. X. L. Tang, D. H. Hong, W. L. Chen, and J. H. Pu, “Distributed storage scheme using bipartite graph matching for vehicular networks,” Journal of Software. Ruanjian Xuebao, vol. 27, no. 9, pp. 2377–2388, 2016. View at Google Scholar · View at MathSciNet
  4. N. Gupta, A. Prakash, and R. Tripathi, “Adaptive Beaconing in Mobility Aware Clustering Based MAC Protocol for Safety Message Dissemination in VANET,” Wireless Communications and Mobile Computing, vol. 2017, pp. 1–15, 2017. View at Publisher · View at Google Scholar
  5. X. Tang, D. Hong, and W. Chen, “Data Acquisition Based on Stable Matching of Bipartite Graph in Cooperative Vehicle–Infrastructure Systems,” Sensors, vol. 17, no. 6, p. 1327, 2017. View at Publisher · View at Google Scholar
  6. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc network,” in Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom '99), pp. 151–162, Seattle, DC, USA, August 1999. View at Publisher · View at Google Scholar
  7. G. Korkmaz, E. Ekici, and F. Özgüner, “An efficient fully ad-hoc multi-hop broadcast protocol for inter-vehicular communication systems,” in Proceedings of the 2006 IEEE International Conference on Communications, ICC 2006, pp. 423–428, tur, July 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai, and V. Sadekar, “Broadcast storm mitigation techniques in vehicular ad hoc networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 84–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Shen, X. Cheng, L. Yang, R. Zhang, and B. Jiao, “Data dissemination in VANETs: a scheduling approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2213–2223, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhu, D. Gao, and C. H. Foh, “An Efficient Prediction-Based Data Forwarding Strategy in Vehicular Ad Hoc Network,” International Journal of Distributed Sensor Networks, vol. 2015, Article ID 128725, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhu, M. Liu, Y. Wen, C. Ma, and B. Liu, “Parking backbone: toward efficient overlay routing in VANETs,” International Journal of Distributed Sensor Networks, vol. 2014, Article ID 291308, 13 pages, 2014. View at Publisher · View at Google Scholar
  12. L. Zhang and B. Jin, “Dubhe: A reliable and low-latency data dissemination mechanism for VANETs,” International Journal of Distributed Sensor Networks, vol. 2013, Article ID 581821, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Reyes, C. Barrado, M. López, and C. Excelente, “Vehicle density in VANET applications,” Journal of Ambient Intelligence and Smart Environments, vol. 6, no. 4, pp. 469–481, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Schwartz, H. Scholten, and P. Havinga, “A scalable data dissemination protocol for both highway and urban vehicular environments,” EURASIP Journal on Wireless Communications and Networking, vol. 2013, no. 1, article 257, 2013. View at Publisher · View at Google Scholar
  15. K. Z. Ghafoor, K. A. Bakar, S. Salleh et al., “Fuzzy logic-assisted geographical routing over vehicular ad hoc networks,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 7, pp. 5095–5120, 2012. View at Google Scholar · View at Scopus
  16. C.-J. Huang, Y.-W. Wang, H.-M. Chen et al., “An adaptive multimedia streaming dissemination system for vehicular networks,” Applied Soft Computing Journal, vol. 13, no. 12, pp. 4508–4518, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Wu, X. Chen, Y. Ji et al., “Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation,” IEEE Access, vol. 3, pp. 2481–2491, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Lee, S.-H. Lee, K.-W. Lee, and M. Gerla, “Understanding processing overheads of network coding-based content distribution in vanets,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 11, pp. 2304–2318, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Hassanabadi and S. Valaee, “Reliable periodic safety message broadcasting in VANETs using network coding,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1284–1297, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. M. Ahmed, S. H. S. Ariffin, and N. Fisal, “Network coding techniques for VANET advertising applications,” Eurasip Journal on Wireless Communications and Networking, vol. 2015, no. 1, article 200, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Wu, X. Chen, Y. Ji, S. Ohzahata, and T. Kato, “Efficient broadcasting in VANETs using dynamic backbone and network coding,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6057–6071, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Wu, S. Ohzahata, Y. Ji, and T. Kato, “Joint fuzzy relays and network-coding-based forwarding for multihop broadcasting in vanets,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1415–1427, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Wu, S. Ohzahata, and T. Kato, “VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism,” IEICE Transactions on Communications, vol. E95-B, no. 2, pp. 415–425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” Institute of Electrical and Electronics Engineers. Transactions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. A. Ghazi Zadeh, A. Fahim, and M. El-Gindy, “Neural network and fuzzy logic applications to vehicle systems: literature survey,” International Journal of Vehicle Design, vol. 18, no. 2, pp. 132–193, 1997. View at Google Scholar · View at Scopus
  26. S. Jung, S. Park, and S. Lee, “Effect of MAC throughputs according to relative velocity in vehicle ad hoc network,” in Proceedings of the 2007 International Conference on Convergence Information Technology (ICCIT 2007), pp. 1183–1182, Gyeongbuk, Korea, November 2007. View at Publisher · View at Google Scholar
  27. M. Bando, K. Hasebe, K. Nakanishi, and A. Nakayama, “Analysis of optimal velocity model with explicit delay,” Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 58, no. 5, pp. 5429–5435, 1998. View at Google Scholar · View at Scopus
  28. T. Tang, Y. Wang, X. Yang, and Y. Wu, “A new car-following model accounting for varying road condition,” Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, vol. 70, no. 2, pp. 1397–1405, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. L. Fangxun, C. Rongjun, G. Hongxia, and L. Siuming, “An improved car-following model considering the influence of optimal velocity for leading vehicle,” Nonlinear Dynamics, pp. 1–10, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Yoo, B. S. C. Choi, and M. Gerla, “An opportunistic relay protocol for vehicular road-side access with fading channels,” in Proceedings of the 18th IEEE International Conference on Network Protocols, ICNP'10, pp. 233–242, Kyoto, Japan, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, New Jersey, NJ, USA, 1995. View at MathSciNet
  32. A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta, and H. Mieno, “The max-min Delphi method and fuzzy Delphi method via fuzzy integration,” Fuzzy Sets and Systems, vol. 55, no. 3, pp. 241–253, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Keranen, J. Andott, and T. Karkkainen, “The ONE simulator for DTN protocol evaluation,” in Proceedings of the 2nd International Conference on Simulation Tools and Techniques (Simutools '09), pp. 1–10, Rome, Italy, March 2009. View at Publisher · View at Google Scholar
  34. F. Bai, . Narayanan Sadagopan, and A. Helmy, “IMPORTANT: a framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks,” in Proceedings of the IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 825–835, San Francisco, Calif, USA. View at Publisher · View at Google Scholar
  35. K. Zhixin, H. Liangmin, T. Yehui, and Y. Jianqiang, “Plankton community structure and diversity in coral reefs area of Sanya Bay, Hainan Province, China,” Biodiversity Science, vol. 19, no. 6, pp. 696–701, 2011. View at Publisher · View at Google Scholar
  36. K. Kumar, A. Prakash, and R. Tripathi, “A spectrum handoff scheme for optimal network selection in nemo based cognitive radio vehicular networks,” Wireless Communications and Mobile Computing, vol. 2017, Article ID 6528457, 16 pages, 2017. View at Publisher · View at Google Scholar