Table of Contents
X-Ray Optics and Instrumentation
Volume 2010, Article ID 583626, 10 pages
Research Article

Measuring Curved Crystal Performance for a High-Resolution, Imaging X-Ray Spectrometer

1National Security Technologies, LLC (NSTec), 161 S. Vasco Road, Livermore, CA 94550, USA
2Lawrence Livermore National Laboratory (LLNL), 7000 East Avenue, Livermore, CA 94550, USA

Received 16 December 2009; Accepted 7 June 2010

Academic Editor: Gene Ice

Copyright © 2010 Michael J. Haugh and Richard Stewart. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Golovkin, R. Mancini, S. Louis et al., “Spectroscopic determination of dynamic plasma gradients in implosion cores,” Physical Review Letters, vol. 88, no. 4, Article ID 045002, pp. 450021–450024, 2002. View at Google Scholar
  2. J. A. Koch, N. Izumi, L. A. Welser et al., “Core temperature and density profile measurements in inertial confinement fusion implosions,” High Energy Density Physics, vol. 4, no. 1-2, pp. 1–17, 2008. View at Publisher · View at Google Scholar
  3. B. Yaakobi, R. Epstein, C. F. Hooper Jr., D. A. Haynes Jr., and Q. Su, “Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines,” Journal of X-Ray Science and Technology, vol. 6, no. 2, pp. 172–187, 1996. View at Google Scholar
  4. B. Yaakobi, F. J. Marshall, and R. Epstein, “High temperature of laser-compressed shells measured with Kr34+ and Kr35+ x-ray lines,” Physical Review E, vol. 54, no. 5, pp. 5848–5850, 1996. View at Google Scholar
  5. M. Bitter, S. Von Goeler, R. Horton et al., “Doppler-broadening measurements of x-ray lines for determination of the ion temperature in tokamak plasmas,” Physical Review Letters, vol. 42, no. 5, pp. 304–307, 1979. View at Publisher · View at Google Scholar
  6. O. Renner, T. Missalla, P. Sondhauss et al., “High-luminosity, high-resolution, x-ray spectroscopy of laser-produced plasma by vertical-geometry Johann spectrometer,” Review of Scientific Instruments, vol. 68, no. 6, pp. 2393–2403, 1997. View at Google Scholar
  7. O. Renner, S. G. Podorov, O. Wehrhan, and E. Förster, “Vertical dispersion Johann x-ray spectrometer with asymmetrically cut crystal,” Review of Scientific Instruments, vol. 75, no. 11, pp. 4569–4577, 2004. View at Publisher · View at Google Scholar
  8. M. Kopecký, “A modified scheme of Johann spectrograph,” Review of Scientific Instruments, vol. 66, no. 10, pp. 4921–4924, 1995. View at Publisher · View at Google Scholar
  9. I. Uschmann, E. Forster, K. Bell, and G. Holzer, “X-ray reflection properties of elastically bent perfect crystals in bragg geometry,” Journal of Applied Crystallography, vol. 26, pp. 405–412, 1993. View at Google Scholar
  10. I. Uschmann, A. C. Malgrange, and E. Forster, “Measurement of a bent crystal rocking curve with oscillations,” Journal of Applied Crystallography, vol. 30, pp. 1150–1151, 1997. View at Google Scholar
  11. D. Taupin, “Théorie dynamique de la diffraction des rayons X par les cristaux déformés,” Bulletin de la Société Française de Minéralogie et de Cristallographie, vol. 84, pp. 469–511, 1964. View at Google Scholar
  12. S. G. Podorov and E. Förster, “Theory of X-ray diffraction on asymmetrically cut and bent crystals,” Physica Status Solidi A, vol. 220, no. 2, pp. 829–836, 2000. View at Google Scholar
  13. S. G. Podorov, “X-Ray for Windows,”
  14. S. Tolansy, Multiple Beam Interferometry of Surfaces and Films, Dover, New York, NY, USA, 1970.
  15. S. Stepanov, “X0h on the Web,”