Table of Contents
X-Ray Optics and Instrumentation
Volume 2010 (2010), Article ID 687496, 9 pages
http://dx.doi.org/10.1155/2010/687496
Review Article

Applications of Compact Laser-Driven EUV/XUV Plasma Sources

Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany

Received 1 February 2010; Revised 25 August 2010; Accepted 25 September 2010

Academic Editor: Ali Khounsary

Copyright © 2010 Armin Bayer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials, gaseous jets of noble gases or solid Gold are employed. In order to obtain high EUV fluence, a Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to the source. By demagnified (10x) imaging of the Au plasma, an EUV spot with a maximum energy density of ∼1.3 J/cm2 is generated (3 μm diameter, pulse duration 8.8 ns). First applications of this system reveal its potential for high-resolution modification and direct structuring of solid surfaces. Additionally, an EUV/XUV setup for structural analysis was developed. Using a gas puff target combined with a grazing incidence optics (Kirkpatrick-Baez arrangement), it offers the possibility to perform angular resolved reflectivity, diffraction, and scattering experiments. For chemical analysis of various samples, an NEXAFS setup was built, based on gaseous Krypton as a broadband emitter in the water-window range around the carbon K-edge (4.4 nm). Here, proof-of-principle for NEXAFS with lab-scaled XUV sources is given on polyimide as a reference.