Advances in Civil Engineering
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision113 days
Acceptance to publication22 days
CiteScore3.400
Journal Citation Indicator0.370
Impact Factor1.8

Experimental Study on the Seismic Performance of Insulated Single-Sided Composite Shear Walls under Different Shear Spans and Axial Compression Ratios

Read the full article

 Journal profile

Advances in Civil Engineering publishes original research articles as well as review articles in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies.

 Editor spotlight

Chief Editor, Professor Vipulanandan, is based at the University of Houston and his current research interests are in geotechnical, materials and geoenvironmental engineering.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Building the Governance to Conserve and Utilize Industrial Heritage in East Asia: The Cases of Japan and Taiwan

This study examines the difference between Japan and Taiwan in building governance for the conservation and reuse of industrial heritage. Japan started paying attention to industrial facilities as heritage due to the neglect of heritage, regional decline, and awareness of asset conservation in both cases. In contrast, conservation projects in Taiwan started because under policy of disposing of public properties, the abandoned heritage was at the risk of redevelopment. Japan’s policy goal was to conserve assets in both cases, while Taiwan aimed at regenerating modern industrial heritage and revitalizing the region. In all three cases, we found that there was a promotion organization which consisted primarily of residents and citizens. In Japan’s case, local governments played a more prominent role than the central government; in Taiwan, both the central and local governments did their part appropriately. These differences between the two countries are also observed in the process of decommissioning industrial facilities and citizens’ awareness of industrial heritage.

Research Article

Optimized Transverse–Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders

I-section girders with different types of steel in the flanges and web (fyf > fyw, respectively) are known as transverse hybrid girders. These have proven to be more economical than their homogeneous counterparts. However, the use of hybrid configurations in the longitudinal direction of the element has yet to be studied. This paper uses optimization techniques to explore the possibility of constructing transverse and longitudinally hybrid (TLH) steel girders. The optimization objective is to minimize the manufacturing cost, including seven activities besides the material cost. The geometrically double symmetric I-girder design subjected to a uniform transverse load is performed using Eurocode 3 specifications. Nine case studies are implemented, varying the element span (L) and the applied load. The results show that establishing various configurations along the length of the element is beneficial. The optimum number of transition points is six, meaning the girder will have four configurations, i.e., one central and three others symmetrically distributed toward each half of the element. The optimum position for the first transition would be at (L/2), the second at (L/2), and the third at (L/2). The optimum extreme configuration is usually homogeneous (fyf = fyw = 235 MPa). The others increase the steel quality in the plates, maintaining hybrid arrangements to reach the central one that usually remains with S700 steel for the flanges and S355 for the web. The study shows that TLH configurations are more effective for elements with larger spans. By applying the formulated design recommendations in a different case study, the manufacturing cost dropped by over 50% compared to the traditionally designed element and by more than 10% relative to the optimized element with a homogeneous configuration. The study’s limitations and encouraging results suggest future lines of research in this area.

Research Article

Enhancing Seismic Performance: A Comprehensive Study on Masonry and Reinforced Concrete Structures Considering Soil Properties and Environmental Impact Assessment

Approximately 20,000 people are killed annually on average by building and infrastructure collapses and failures caused by seismic activities. In earlier times, seismic design codes and specifications set minimal requirements for life safety performance levels. Earthquakes can be thought of as recurring events in seismically active areas, with severity states ranging from serviceability to ultimate levels. Buildings designed in accordance with site-specific response spectra, which take into account soil properties based on ground motion amplification data, are better at withstanding such forces and serving their design purposes. This study aims to investigate the site response of reinforced and masonry buildings, considering the effect of soil properties based on the amplification of ground motion data, and to compare the life cycle assessment of the buildings under consideration based on the design and the site-specific response spectrum. In terms of soil properties and site-specific response spectra, STRATA is used to determine the site-specific response for the considered locations for a return period of 475 years for 100 realizations based on the randomization of site properties. For structural analysis, AxisVM software, which is a compatible finite element analysis, is used for building design and analysis, generating comparative results based on the design- and site-specific spectra. To determine and identify potential failures in the model, response spectra were applied to understand the difference in horizontal deflection in two different instances (for elastic design- and site-specific spectra). After building design and analysis is performed, a life cycle analysis in terms of environmental impact assesments using OpenLCA and IdematLightLCA is done. This is done to ascertain the additional expenses in terms of ecocosts and carbon footprints on some failed elements in the structure which are required to make the buildings more resilient when the site-specific response spectrum is applied and to compare the potential economic losses that may occur based on ecological costs. The study presents a comprehensive investigation into the seismic response of masonry and reinforced concrete buildings in Győr, Hungary, incorporating advanced geophysical techniques like multichannel surface wave (MASW) and structural analysis software, AxisVM. Additionally, tailored retrofitting strategies are explored to enhance structural resilience in seismic-prone regions. Significant ground amplifications in soil properties across different profiles are revealed, emphasizing the effectiveness of these strategies in reducing structural deflection and improving resilience. Highlights of the results are observed where the site-specific response spectra are higher than the EC8 design response spectrum. Furthermore, the research underscores the substantial environmental impact, considering both ecocosts and CO2 emissions associated with retrofitting measures, highlighting the importance of sustainable structural interventions in mitigating seismic risks.

Research Article

Land Cover and Land Surface Temperature in the West Bank, Palestine

The 10 major cities in the West Bank (WB), Palestine—Nablus, Ramallah and Al-Bireh, Jenin, Qalqilia, Salfit, Tubas, Jericho, Bethlehem, Tulkarem, and Hebron—are experiencing rapid urban transformation and changing land cover. This study explores the relationship between land cover (built-up and unbuilt areas) and soil type in these cities across benchmark years 1995, 2000, 2005, 2010, 2015, and 2021. In addition to the former, the paper argues that the expansion and increase of the built-up area and the change in soil type of the aforementioned cities in the West Bank, Palestine, are leading to changes in the land surface temperature (LST). This conclusion was reached through a methodological framework that was developed to measure the relationship between the changing land cover (built-up and unbuilt-up areas), soil type, and LST in the 10 major cities in the region. The framework relies on data retrieved through remote sensing in the years from 1995 to 2021. The results of the analysis conducted through this methodological framework showed that there is an inverse relationship between the increase in built-up areas and LST; however, LST is less inside the built-up areas than in the surrounding areas (open spaces) due to different land cover (unbuilt area with grass and shrubs) and different soil type.

Research Article

Experimental Study on the Boundary Reflection Effect of Stress Wave Propagation Based on the Newly Developed Test Apparatus

There is a ubiquitous boundary reflection effect of stress wave propagation in the indoor experimental studies. It is critical to improve the validity of waveform data by optimizing boundary materials to absorb reflection waves. In the present study, a calculation method for the optimal wave impedance of boundary materials was proposed based on the transmission and reflection principle of one-dimensional stress waves at the interface of different media. By using the calculation method, the optimal wave impedance value of the boundary material was obtained. A one-dimensional stress wave propagation test apparatus was developed for exploring the improvement effect of absorbing materials on the boundary reflection effect. One-dimensional stress wave propagation experimental studies in the complete red sandstone samples were carried out by setting various boundary absorbing materials such as pine pad, rubber pad, and steel pad. The results indicated that the experimental test results were consistent with the theoretical calculation results. In the stress wave propagation tests, the optimal wave impedance value of the boundary material was 1.12 × 106 kg/m2·s. When the pine pads were used as boundary absorbing materials, the suppression effect of boundary reflection effects is relatively the best. The present study provides references for analyzing the characteristics and mechanism of stress wave propagation and attenuation.

Research Article

Investigation on Dynamic Stability of Cement-Stabilized Expansive Soil Subgrades Subjected to Repeated Heavy-Haul Train Loads

The dynamic characteristics of the filler are intricately linked to the stability of the subgrade. In this investigation, relying on Haoji (Haolebaoji-Ji’an, China) heavy-haul railway engineering, cyclic triaxial tests were executed to scrutinize the dynamic attributes exhibited by the 3%–5% cement-stabilized expansive soil (CSES) across a series of diverse cyclic stress, confining pressures, and frequencies. Concurrently, in situ vibration trials were undertaken to dissect the dynamic characteristics inherent to the CSES subgrade. The outcomes of cyclic triaxial tests indicate that the augmentation in both the dynamic shear strength and modulus of CSES by a factor of 2–3, coupled with an escalation of the critical dynamic stress threshold by five tosix times, is attributed to the heightened internal structural density within the CSES compared to virgin expansive soil. In identical settings, it is noteworthy that the mean critical dynamic stress threshold observed for CSES surpasses that of Group A filling by a factor of 1.5–1.7. Furthermore, the maximum critical dynamic stress exhibited by CSES achieves a 1.2-fold superiority over its lime-stabilized expansive soil (LSES). The outcomes gleaned from the in situ vibration tests elucidate that, when subjected to the passage of a high-velocity train traveling at 120 km/hr, bearing the load of 25–30 tons per axle, the subgrade surface exhibits dynamic stress ranging from 98.57 to 116.07 kPa. Meanwhile, the dynamic stress undergoes a notable escalation due to rainfall infiltration, intensifying by a factor of 1.02–1.28 times its original magnitude. The influence depth of dynamic stress extends 1.4–1.6 times beyond the designed subgrade bed thickness of 2.5 m. Notably, the critical dynamic stress of the filler surpasses the dynamic stress at the same position, underscoreing the capacity of 3%–5% CSES filling for heavy-haul railways to ensure long-term dynamic stability.

Advances in Civil Engineering
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision113 days
Acceptance to publication22 days
CiteScore3.400
Journal Citation Indicator0.370
Impact Factor1.8
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.