International Transactions on Electrical Energy Systems
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision104 days
Acceptance to publication20 days
CiteScore5.300
Journal Citation Indicator0.560
Impact Factor2.3

Submit your research today

International Transactions on Electrical Energy Systems is now open for submissions

Read our author guidelines

 Journal profile

International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, distribution, and conversion of electrical energy systems. 

 Editor spotlight

International Transactions on Electrical Energy Systems maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Effect of Sensor Faults on the Stresses Caused by Wind Turbine Blades

Rotor blades are the main part for generating electrical energy and the primary source of stresses in a wind turbine (WT). The stresses caused by the blades increase the load on the hub, tower, and foundation of the WTs. In this research, the asymmetry of the blade angle with each other has been investigated as one of the factors affecting the stress distribution using Monte Carlo (MC) simulation. The focus of this study is on the stresses caused by the asymmetry of the blades angle when there is the fault in the sensors. A deep understanding of the blade stress distribution due to sensor faults can improve control designs, increase WT operating time, and reduce energy generation costs when these faults occur.

Research Article

Investigation of the Impact of SSSC-Based FLC on the Stability of Power Systems Connected to Wind Farms

The integration of renewable energy sources into power systems has increased significantly in recent years. Among various types of renewable energy, the use of wind energy is growing rapidly due to its low operating cost, wide distribution worldwide, and no greenhouse gas emissions. However, power systems integrated with wind energy may face stability and reliability issues due to the intermittent nature of wind power. Therefore, in power systems connected to wind farms, it is usually required to use some compensators such as static synchronous series compensator (SSSC) to increase the system performance under abnormal conditions. On the other hand, for an SSSC to be effective in improving the system performance, it must be equipped with a suitable controller. In this paper, a fuzzy logic controller (FLC) is used for the SSSC because of its advantages over conventional controllers. Extensive research has been conducted in power systems with wind turbines in which SSSC or FLC has been used; however, their simultaneous application in such systems has received less attention. Therefore, this article aims to fill this gap. The proposed method is implemented on two power systems and the simulation results are analyzed. In both systems, the dynamic behavior of three different wind farms is examined. In the first and second wind farms, either a squirrel cage induction generator (SCIG) or doubly-fed induction generator (DFIG) are used, whereas in the third one which is a combined wind farm (CWF), an equal number of SCIG and DFIG are employed. In wind farms with SCIG or DFIG, an SSSC is also utilized. Furthermore, an FLC is employed for the SSSC to improve its efficacy. A proportional integral (PI) controller is also considered for the SSSC, and its results are compared with FLC results. The simulation results confirm the superiority of FLC over PI controller.

Research Article

Stability and Reactive Power Sharing Enhancement in Islanded Microgrid via Small-Signal Modeling and Optimal Virtual Impedance Control

In the context of integrating Renewable Energy Sources, Microgrid (MG) development is pivotal, particularly as a foundational technology for Smart-Grid evolution. Despite advancements in control techniques, challenges persist in ensuring system stability and accurate power sharing across diverse operational conditions and load types. The objective of this research is to control numerous paralleled inverters-based distributed generators (DGs) that contribute to power sharing in an island MG. The proposed methodology involves developing an innovative small-signal model for islanding MGs that incorporate virtual impedances. Subsequently, optimization algorithms based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are proposed and compared for designing the virtual impedances. These algorithms analyze all potential operating points, aiming to minimize reactive power mismatches while maximizing MG stability. The suggested objective function facilitates the simultaneous achievement of these objectives. The proposed approaches were tested using MATLAB-Simulink software, and the comparison of the results between conventional approach and the proposed optimal approaches shows significant improvement in terms of the dynamic response during load changes, such as a decrease in response time by up to 20%, a reduction in overshoot percentage by approximately 15%, and a settling time improvement of nearly 25%. These quantified improvements highlight the effectiveness of the GA and PSO methods in minimizing the reactive power-sharing error while optimizing MG performance and stability.

Research Article

Feature Extraction and Classification of Power Quality Disturbances Using Optimized Tunable-Q Wavelet Transform and Incremental Support Vector Machine

The widespread integration of renewable energy sources (RESs) into power systems using power electronics-based interface devices has led to a substantial rise in power quality (PQ) issues. There is an immediate requirement for effective monitoring, detection, and classification of power quality disturbances (PQDs) that is needed to take remedial measures and design planning of the system architecture. This study presents a hybrid approach with an objective for the feature extraction and classification of PQDs. The proposed hybrid approach is comprised of an optimized tunable-Q wavelet transform (OTQWT) for the feature extraction and incremental support vector machine (ISVM). A four-stage approach is suggested for the PQ detection and classification in this study. In the first stage, the various data are retrieved both in the form of synthetic data by mathematical formulations and real-time data with prototype design setup. In the second stage, regardless of the specified wavelet function, the PQD signals are decomposed into low-pass and high-pass sub-bands using the tunable-Q wavelet transform (TQWT). However, the utilization of default decomposition parameters to address nonstationary PQ signals may lead to information loss and reduced performance of the system. To avoid this limitation, an OTQWT as an enhanced technique to TQWT based on an Adaptive Particle Swarm Optimization (APSO) is suggested. A modified objective function based on the mean square error (MSE) is used to improve the decomposition process. In the third stage, an efficient classifier is suggested based on the ISVM. Lastly, to test and evaluate the performance of the proposed approach, twelve types of PQDs including noise and multiple occurrences are considered. The comparative analysis with other popular methods reflects the better performance of the proposed approach and justifies its use for PQ detection and classification purposes in real-time​ conditions.

Research Article

PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet

Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.

Research Article

Torque System Modeling and Electromagnetic Coupling Characteristics Analysis of a Midpoint Injection Type Bearingless Permanent Synchronous Magnet Motor

Taking the Midpoint Injection type Bearingless Permanent Magnet Synchronous Motor (MPI-BL-PMSM) as an object, to solve its problems of large torque pulsation and insufficient suspension force when adopting Midpoint Suspension Current Unilateral Injection (MPSC-UI), a Midpoint Suspension Current Bilateral Injection (MPSC-BI) solution is proposed. Based on the half-winding structure of MPI-BL-PMSM, and from the electromechanical energy conversion principle, the torque model for MPSC-BI solution is established. On this basis, the torque model for MPSC-UI method was derived. The correctness of the established torque mathematical models based on half-winding structure was verified through the finite element method (FEM), and the “dual-frequency” electromagnetic coupling characteristics of suspension current on electromagnetic torque were compared and analyzed from the perspectives of theoretical model and FEM simulation. The results indicate that the MPSC-BI method can effectively suppress or avoid the torque pulsation coupled by suspension current and can obtain about 1-time increase of controllable suspension force; the advantages of MPSC-BI solution in dynamic torque decoupling characteristics are demonstrated, while the only downside is that the coupling effect of torque current on radial suspension force is slightly greater than that of the MPSC-UI method.

International Transactions on Electrical Energy Systems
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision104 days
Acceptance to publication20 days
CiteScore5.300
Journal Citation Indicator0.560
Impact Factor2.3
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.