Laser and Particle Beams
Publishing Collaboration
More info
CUP logo
 Journal metrics
See full report
Acceptance rate33%
Submission to final decision137 days
Acceptance to publication33 days
CiteScore2.000
Journal Citation Indicator0.190
Impact Factor0.9

Laser and Particle Beams to be published by Cambridge University Press from 2024

Laser and Particle Beams is now closed for submissions on the Hindawi platform.

Please submit your manuscript via Cambridge University Press.

Find out more

 Journal profile

Laser and Particle Beams is an open-access journal publishing original research and review articles covering basic physics issues of intense laser and particle beams, and the interaction of these beams with matter.

 Editor spotlight

Chief Editor, Dr Katarzyna Batani, is based at the Institute of Plasma Physics and Laser Microfusion, Poland.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Numerical Study of Carbon Nanofoam Targets for Laser-Driven Inertial Fusion Experiments

Porous materials have peculiar characteristics that are relevant for inertial confinement fusion (ICF). Among them, chemically produced foams are proved to be able to smooth the laser inhomogeneities and to increase the coupling of the laser with the target. Foams realized with other elements and techniques may prove useful as well for ICF applications. In this work, we explore the potential of a novel class of porous materials for ICF, namely, carbon nanofoams produced with the pulsed laser deposition (PLD) technique, by means of hydrodynamic numerical simulations. By comparison with a simulation of solid-density carbon, PLD nanofoams show a higher pressure at the shock front, which could make them potential good candidates as ablators for a capsule for direct-drive fusion.

Research Article

Helium as a Surrogate for Deuterium in LPI Studies

Helium or neopentane can be used as surrogate gas fill for deuterium (D2) or deuterium-tritium (DT) in laser-plasma interaction studies. Surrogates are convenient to avoid flammability hazards or the integration of cryogenics in an experiment. To test the degree of equivalency between deuterium and helium, experiments were conducted in the Pecos target chamber at Sandia National Laboratories. Observables such as laser propagation and signatures of laser-plasma instabilities (LPI) were recorded for multiple laser and target configurations. It was found that some observables can differ significantly despite the apparent similarity of the gases with respect to molecular charge and weight. While a qualitative behaviour of the interaction may very well be studied by finding a suitable compromise of laser absorption, electron density, and LPI cross sections, a quantitative investigation of expected values for deuterium fills at high laser intensities is not likely to succeed with surrogate gases.

Research Article

Modeling of a Liquid Leaf Target TNSA Experiment Using Particle-In-Cell Simulations and Deep Learning

Liquid leaf targets show promise as high repetition rate targets for laser-based ion acceleration using the Target Normal Sheath Acceleration (TNSA) mechanism and are currently under development. In this work, we discuss the effects of different ion species and investigate how they can be leveraged for use as a possible laser-driven neutron source. To aid in this research, we develop a surrogate model for liquid leaf target laser-ion acceleration experiments, based on artificial neural networks. The model is trained using data from Particle-In-Cell (PIC) simulations. The fast inference speed of our deep learning model allows us to optimize experimental parameters for maximum ion energy and laser-energy conversion efficiency. An analysis of parameter influence on our model output, using Sobol’ and PAWN indices, provides deeper insights into the laser-plasma system.

Review Article

Forty Years of Laser-Induced Breakdown Spectroscopy and Laser and Particle Beams

The laser-induced breakdown spectroscopy (LIBS) technique is one of the most promising laser-based analytical techniques. Coincidentally, the LIBS acronym was proposed by Radziemski and Loree in two seminal papers published in 1981, almost at the same time in which the Laser and Particle Beams journal started its publication. In this contribution, the evolution of the LIBS technique is discussed following a chronological collection of key papers in LIBS, some of which were in fact published on LPB.

Research Article

Univocal Discrimination of α Particles Produced by 11B(p, α)2α Fusions in Laser-Matter Experiments by Advanced Thomson Spectrometry

The energy problem is an open issue becoming increasingly pressing. The possibility to use nuclear fusion as an alternative energy source is thus acquiring progressively more importance and many investors are pushing to achieve the goal of an electric plant based on fusion. The most studied reaction is the deuterium-tritium one, but this poses several technical issues related to the handling of the radioactive fuel and neutron generation. In this frame, the aneutronic 11B(p, α)2α fusion reaction has attracted the interest of many researchers. Despite a fusion reactor based on pB is still a long-term goal, the study of this reaction is important both for astrophysics research and for its possible employment in schemes of high brightness source of α particles for applications, as for instance in medicine. Nevertheless, the univocal identification of the produced alphas is a well-known challenging task when the reaction is triggered by high-intensity lasers. Indeed, due to the multifaceted emission typical of laser-matter interactions, the signal coming from alphas is often superimposed to that generated by protons and by other ions, and in many cases, it is therefore hardly recognizable. In this work, we analysed the possibility of employing a Thomson spectrometer (TS) with an adequate differential filtering system for the exclusion from the α-particle trace, the contribution of all other ionic species. Moreover, for the energy ranges where the filtering method cannot be successfully applied, we investigated the feasibility of integrating in the TS assembly a particle detector for time-of-flight (TOF) measurements.

Research Article

Photon and Neutron Production as In Situ Diagnostics of Proton-Boron Fusion

Short-pulse, ultrahigh-intensity lasers have opened new regimes for studying fusion plasmas and creating novel ultrashort ion beams and neutron sources. Diagnosing the plasma in these experiments is important for optimizing the fusion yield but difficult due to the picosecond time scales, 10 s of micron-cubed volumes, and high densities. We propose to use the yields of photons and neutrons produced by parallel reactions involving the same reactants to diagnose the plasma conditions and predict the yields of specific reactions of interest. In this work, we focus on verifying the yield of the high-interest aneutronic proton-boron fusion reaction , which is difficult to measure directly due to the short stopping range of the produced in most materials. We identify promising photon-producing reactions for this purpose and compute the ratios of the photon yield to the yield as a function of plasma parameters. In beam-fusion experiments, the yield is an easily-measurable observable to verify the yield. In light of our results, improving and extending measurements of the cross-sections for these parallel reactions are important steps to gain greater control over these laser-driven fusion plasmas.

Laser and Particle Beams
Publishing Collaboration
More info
CUP logo
 Journal metrics
See full report
Acceptance rate33%
Submission to final decision137 days
Acceptance to publication33 days
CiteScore2.000
Journal Citation Indicator0.190
Impact Factor0.9
 Submit

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.