About this Journal Submit a Manuscript Table of Contents
Advances in Meteorology
Volume 2012 (2012), Article ID 529064, 19 pages
http://dx.doi.org/10.1155/2012/529064
Research Article

Modelling Lake Ice Phenology with an Examination of Satellite-Detected Subgrid Cell Variability

Department of Geography and Environmental Management and Interdisciplinary Centre on Climate Change (IC3), University of Waterloo, Waterloo, ON, Canada N2L 3G1

Received 23 March 2012; Revised 22 June 2012; Accepted 7 August 2012

Academic Editor: Martin Stendel

Copyright © 2012 Laura C. Brown and Claude R. Duguay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Rouse, J. Binyamin, P. D. Blanken, et al., “The influence of lakes on the regional energy and water balance of the central Mackenzie,” in Chapter 18 in Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, vol. 1, pp. 309–325, 2008.
  2. L. C. Brown and C. R. Duguay, “The response and role of ice cover in lake-climate interactions,” Progress in Physical Geography, vol. 34, no. 5, pp. 671–704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. N. Futter, “Patterns and trends in Southern Ontario lake ice phenology,” Environmental Monitoring and Assessment, vol. 88, no. 1–3, pp. 431–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Dyck, “Community monitoring of environmental change: college-based limnological studies at Crazy Lake (Tasirluk), Nunavut,” Arctic, vol. 60, no. 1, pp. 55–61, 2007. View at Scopus
  5. M. O. Jeffries and K. Morris, “Instantaneous daytime conductive heat flow through snow on lake ice in Alaska,” Hydrological Processes, vol. 20, no. 4, pp. 803–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. C. Brown and C. R. Duguay, “A comparison of simulated and measured lake ice thickness using a Shallow Water Ice Profiler,” Hydrological Processes, vol. 25, pp. 2932–2941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. B. H. Ramsay, “The interactive multisensor snow and ice mapping system,” Hydrological Processes, vol. 12, no. 10-11, pp. 1537–1546, 1998. View at Scopus
  8. S. R. Helfrich, D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, “Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS),” Hydrological Processes, vol. 21, no. 12, pp. 1576–1586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. R. Duguay, L. C. Brown, K. K. Kang, and H. Kheyrollah Pour, Lake Ice, In: Arctic Report Card, 2011, http://www.arctic.noaa.gov/reportcard/lake_ice.html.
  10. S. E. L. Howell, L. C. Brown, K. K. Kang, and C. R. Duguay, “Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006,” The Remote Sensing of Environment, vol. 113, no. 4, pp. 816–834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. R. Duguay, T. J. Pultz, P. M. Lafleur, and D. Drai, “RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada,” Hydrological Processes, vol. 16, no. 8, pp. 1631–1644, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Geldsetzer, J. Van Der Sanden, and B. Brisco, “Monitoring lake ice during spring melt using RADARSAT-2 SAR,” Canadian Journal of Remote Sensing, vol. 36, supplement 2, pp. S391–S400, 2010. View at Scopus
  13. K. K. Kang, C. R. Duguay, and S. E. L. Howell, “Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada,” The Cryosphere, vol. 6, pp. 235–254, 2012.
  14. D. K. Hall, G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, “MODIS snow-cover products,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 181–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. K. Hall and G. A. Riggs, “Accuracy assessment of the MODIS snow products,” Hydrological Processes, vol. 21, no. 12, pp. 1534–1547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Frei and S. Lee, “A comparison of optical-band based snow extent products during spring over North America,” Remote Sensing of Environment, vol. 114, no. 9, pp. 1940–1948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Brown, R. Thorne, and M. K. Woo, “Using satellite imagery to validate snow distribution simulated by a hydrological model in large Northern Basins,” Hydrological Processes, vol. 22, no. 15, pp. 2777–2787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. K. Hall, J. L. Foster, N. E. DiGirolamo, and G. A. Riggs, “Snow cover, snowmelt timing and stream power in the Wind River Range, Wyoming,” Geomorphology, vol. 137, pp. 87–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Parajka and G. Blöschl, “The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models,” Journal of Hydrology, vol. 358, no. 3-4, pp. 240–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Brown, C. Derksen, and L. Wang, “A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008,” Journal of Geophysical Research D, vol. 115, no. 16, Article ID D16111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Roy, A. Royer, and R. Turcotte, “Improvement of springtime streamflow simulations in a boreal environment by incorporating snow-covered area derived from remote sensing data,” Journal of Hydrology, vol. 390, no. 1-2, pp. 35–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Mishra, K. A. Cherkauer, L. C. Bowling, and M. Huber, “Lake Ice phenology of small lakes: impacts of climate variability in the Great Lakes region,” Global and Planetary Change, vol. 76, no. 3-4, pp. 166–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Reed, M. Budde, P. Spencer, and A. E. Miller, “Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska,” Remote Sensing of Environment, vol. 113, no. 7, pp. 1443–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Balsamo, R. Salgado, E. Dutra, S. Boussetta, and T. Stockdale, “On the contribution of lakes in predicting near-surface temperature in global weather forecasting model,” Tellus A, vol. 64, Article ID 15829, 2012.
  25. K. K. Kang, C. R. Duguay, S. E. L. Howell, C. P. Derksen, and R. E. J. Kelly, “Sensitivity of AMSR-E brightness temperatures to the seasonal evolution of lake ice thickness,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 751–755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Palecki and R. G. Barry, “Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland,” Journal of Climate & Applied Meteorology, vol. 25, no. 7, pp. 893–902, 1986. View at Scopus
  27. D. M. Livingstone and R. Adrian, “Modeling the duration of intermittent ice cover on a lake for climate-change studies,” Limnology and Oceanography, vol. 54, no. 5, pp. 1709–1722, 2009. View at Scopus
  28. R. Heron and M. K. Woo, “Decay of a high Arctic lake-ice cover: observations and modelling,” Journal of Glaciology, vol. 40, no. 135, pp. 283–292, 1994. View at Scopus
  29. G. E. Liston and D. K. Hall, “Sensitivity of lake freeze-up and break-up to climate change: a physically based modeling study,” Annals of Glaciology, vol. 21, pp. 387–393, 1995.
  30. S. J. Vavrus, R. H. Wynne, and J. A. Foley, “Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model,” Limnology and Oceanography, vol. 41, no. 5, pp. 822–831, 1996. View at Scopus
  31. J. Launiainen and B. Cheng, “Modelling of ice thermodynamics in natural water bodies,” Cold Regions Science and Technology, vol. 27, no. 3, pp. 153–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. C. R. Duguay, G. M. Flato, M. O. Jeffries, P. Ménard, K. Morris, and W. R. Rouse, “Ice-cover variability on shallow lakes at high latitudes: model simulations and observations,” Hydrological Processes, vol. 17, no. 17, pp. 3465–3483, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Mironov, E. Heise, E. Kourzeneva, B. Ritter, N. Schneider, and A. Terzhevik, “Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO,” Boreal Environment Research, vol. 15, no. 2, pp. 218–230, 2010. View at Scopus
  34. L. C. Brown and C. R. Duguay, “The fate of lake ice in the North American Arctic,” The Cryosphere Discussions, vol. 5, no. 4, pp. 1775–1834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Dibike, T. Prowse, T. Saloranta, and R. Ahmed, “Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate,” Hydrological Processes, vol. 25, no. 19, pp. 2942–2953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. L. A. Vinvent, W. A. van Wijngaarden, and R. Hopkinson, “Surface temperature and humidity trends in Canada for 1953–2005,” Journal of Climate, vol. 20, no. 20, pp. 5100–5113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Mekis and L. A. Vincent, “An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada,” Atmosphere-Ocean, vol. 49, no. 2, pp. 163–177, 2011.
  38. R. D. Brown, “Analysis of snow cover variability and change in Québec, 1948–2005,” Hydrological Processes, vol. 24, no. 14, pp. 1929–1954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. R. Duguay, T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix, and P. Ménard, “Recent trends in Canadian lake ice cover,” Hydrological Processes, vol. 20, no. 4, pp. 781–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. Natural Resources Canada, “CanVec, Canada, ed. 1,” Government of Canada, Natural Resources Canada, Earth Sciences Sector, Centre for Topographic Information, 2010, ftp://ftp2.cits.rncan.gc.ca/pub/canvec/.
  41. National Ice Center, “IMS daily Northern Hemisphere snow and ice analysis at 4 km and 24 km resolution,” Boulder, Colo, USA, National Snow and Ice Data Center, Digital media, 2008.
  42. D. K. Hall, G. A. Riggs, and V. V. Salomonson, “MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005, 2000–2011,” Boulder, Colo, USA, National Snow and Ice Data Center. Digital media, 2006.
  43. D. K. Hall, G. A. Riggs, and V. V. Salomonson, “Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms,” 2001, http://modis-snow-ice.gsfc.nasa.gov/?c=atbd.html.
  44. G. A. Riggs, D. K. Hall, and V. V. Salomonson, “MODIS Snow Products User Guide to Collection 5,” 2006, http://modis-snow-ice.gsfc.nasa.gov/uploads/sug_c5.pdf.
  45. P. Ménard, C. R. Duguay, G. M. Flato, and W. R. Rouse, “Simulation of ice phenology on Great Slave Lake, Northwest Territories, Canada,” Hydrological Processes, vol. 16, no. 18, pp. 3691–3706, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. O. Jeffries, K. Morris, and C. R. Duguay, “Lake ice growth and decay in central Alaska, USA: observations and computer simulations compared,” Annals of Glaciology, vol. 40, pp. 195–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Morris, M. Jeffries, and C. Duguay, “Model simulation of the effects of climate variability and change on lake ice in central Alaska, USA,” Annals of Glaciology, vol. 40, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Kheyrollah Pour, C. R. Duguay, A. Martynov, and L. C. Brown, “Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements,” Tellus A, vol. 64, Article ID 17614, 2012. View at Publisher · View at Google Scholar
  49. G. M. Flato and R. D. Brown, “Variability and climate sensitivity of landfast Arctic sea ice,” Journal of Geophysical Research C, vol. 101, no. 11, pp. 25767–25777, 1996. View at Scopus
  50. G. A. Maykut and N. Untersteiner, “Some results form a time-dependant thermodynamic model of sea ice,” Journal of Geophysical Research, vol. 76, pp. 1550–1575, 1971.
  51. “MSC: Canadian Snow Data CD-ROM, CRYSYS Project, Climate Processes and Earth Observation Division, Meteorological Service of Canada,” Downsview, Ontario, Canada, January 2000.
  52. M. Sturm and G. E. Liston, “The snow cover on lakes of the Arctic Coastal Plain of Alaska, U.S.A.,” Journal of Glaciology, vol. 49, no. 166, pp. 370–380, 2003.
  53. D. Caya and R. Laprise, “A semi-implicit semi-Lagrangian regional climate model: the Canadian RCM,” Monthly Weather Review, vol. 127, no. 2-3, pp. 341–362, 1999. View at Scopus
  54. R. Laprise, “Regional climate modelling,” Journal of Computational Physics, vol. 227, no. 7, pp. 3641–3666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. A. C. M. Beljaars, A. A. M. Holtslag, and R. M. van Westrhenen, “Description of a software library for the calculation of surface fluxes,” Tech. Rep. KNMI, TR-112, Royal Netherlands Meteorological Institute (KNMI), The Netherlands, 1989.
  56. D. A. Plummer, D. Caya, A. Frigon et al., “Climate and climate change over North America as simulated by the Canadian RCM,” Journal of Climate, vol. 19, no. 13, pp. 3112–3132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Gagnon, B. Konan, A. N. Rousseau, and M. Slivitzky, “Hydrometeorological validation of a canadian regional climate model simulation within the chaudiere and chateauguay watersheds (Quebec, Canada),” Canadian Journal of Civil Engineering, vol. 36, no. 2, pp. 253–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Hachem, M. Allard, and C. Duguay, “Using the modis land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada,” Permafrost and Periglacial Processes, vol. 20, no. 4, pp. 407–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Lenormand, C. R. Duguay, and R. Gauthier, “Development of a historical ice database for the study of climate change in Canada,” Hydrological Processes, vol. 16, no. 18, pp. 3707–3722, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Räisänen, “Warmer climate: less or more snow?” Climate Dynamics, vol. 30, no. 2-3, pp. 307–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Martynov, L. Sushama, R. Laprise, and K. Winger, “Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America,” Tellus A, vol. 64, Article ID 16226, 2012.
  62. P. Samuelsson, E. Kourzeneva, and D. Mironov, “The impact of lakes on the European climate as simulated by a regional climate model,” Boreal Environment Research, vol. 15, no. 2, pp. 113–129, 2010. View at Scopus
  63. E. Kourzeneva, H. Asensio, E. Martin, and S. Faroux, “Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling,” Tellus A, vol. 64, Article ID 15640, 2012.
  64. B. E. Goodison, “Compatibility of Canadian snowfall and snow cover data (Cold Creek, Ontario),” Water Resources Research, vol. 17, no. 4, pp. 893–900, 1981. View at Scopus
  65. T. Nagler, H. Rott, M. Heidinger, et al., “Retrieval of physical snow properties from SAR observations at Ku- and X-band frequencies,” European Space Agency Study Contract Report, ESTEC Contract 20756/07/NL/CB, Final Report, 346 p, 2008.