About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 136092, 6 pages
http://dx.doi.org/10.1155/2012/136092
Research Article

Segregation of Cu-In-S Elements in the Spray-Pyrolysis-Deposited Layer of CIS Solar Cells

Department of Electric Engineering and Computer Sciences and Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan

Received 31 March 2012; Revised 4 October 2012; Accepted 11 October 2012

Academic Editor: Ru-Yuan Yang

Copyright © 2012 Seigo Ito and Toshihiro Ryo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Jackson, D. Hariskos, E. Lotter et al., “New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%,” Progress in Photovoltaics: Research and Applications, vol. 19, no. 7, pp. 894–897, 2011. View at Publisher · View at Google Scholar
  2. B. M. Sager, D. Yu, and M. R. Robinson, “Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells,” US Patent, US7, 306, 823 B2, 2007.
  3. T. Wada, Y. Matsuo, S. Nomura et al., “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes,” Physica Status Solidi (A), vol. 203, no. 11, pp. 2593–2597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nanu, J. Schoonman, and A. Goossens, “Nanocomposite three-dimensional solar cells obtained by chemical spray deposition,” Nano Letters, vol. 5, no. 9, pp. 1716–1719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ryo, D. C. Nguyen, M. Nakagiri, N. Toyoda, H. Matsuyoshi, and S. Ito, “Characterization of superstrate type CuInS2 solar cells deposited by spray pyrolysis method,” Thin Solid Films, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. V. K. Kapur, A. Bansal, P. Le, and O. I. Asensio, “Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks,” Thin Solid Films, vol. 431-432, pp. 53–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Oda, M. Matsubayashi, T. Minemoto, and H. Takakura, “Crystallization of In-Se/CuInSe2 thin-film stack by sequential electrodeposition and annealing,” Journal of Crystal Growth, vol. 311, no. 3, pp. 738–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Lincot, J. F. Guillemoles, S. Taunier et al., “Chalcopyrite thin film solar cells by electrodeposition,” Solar Energy, vol. 77, no. 6, pp. 725–737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Halboom, T. Godecke, F. Ernst et al., “Phase relations and microstructure in bulk materials and thin films of the ternary system Cu-In-Se,” in Proceedings of the 11th International Conference on Ternary and Multinary Compounds, pp. 249–252, Institute of Physics, Salford, UK, 1997.
  10. T. Watanabe, H. Nakazawa, M. Matsui, H. Ohbo, and T. Nakada, “The influence of sodium on the properties of CuInS2 thin films and solar cells,” Solar Energy Materials and Solar Cells, vol. 49, no. 1–4, pp. 357–363, 1997. View at Scopus
  11. R. Kaigawa, A. Ohyama, T. Wada, and R. Klenk, “Electric properties of Cu-poor and Cu-rich Cu(In,Ga)S2 films after O2-annealing,” Physica Status Solidi (C), vol. 3, no. 8, pp. 2568–2571, 2006. View at Publisher · View at Google Scholar · View at Scopus