About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 902146, 4 pages
http://dx.doi.org/10.1155/2012/902146
Research Article

Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes

1Graduate Institute of Materials Engineering, National Ping-Tung University of Science and Technology, Pingtung 912, Taiwan
2Institute of Electro-Optical Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan

Received 14 June 2012; Revised 7 August 2012; Accepted 7 August 2012

Academic Editor: Yu-Pei Huang

Copyright © 2012 Ru-Yuan Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  2. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Han, N. Koide, Y. Chiba, and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells,” Applied Physics Letters, vol. 84, no. 13, pp. 2433–2435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Han, N. Koide, Y. Chiba et al., “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance,” Applied Physics Letters, vol. 86, no. 21, Article ID 213501, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, “Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 183, no. 1-2, pp. 133–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kay and M. Grätzel, “Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide,” Chemistry of Materials, vol. 14, no. 7, pp. 2930–2935, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films,” Chemical Communications, no. 14, pp. 1464–1465, 2002. View at Scopus
  9. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers,” Journal of the American Chemical Society, vol. 125, no. 2, pp. 475–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. H. Su, W. H. Lai, L. G. Teoh, M. H. Hon, and J. L. Huang, “Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell,” Applied Physics A, vol. 88, no. 1, pp. 173–178, 2007. View at Publisher · View at Google Scholar · View at Scopus