About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 328763, 8 pages
http://dx.doi.org/10.1155/2013/328763
Research Article

Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

1Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
2School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

Received 14 March 2013; Revised 29 May 2013; Accepted 31 May 2013

Academic Editor: Delia Brauer

Copyright © 2013 Eltjani-Eltahir Hago and Xinsong Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-H. Juang, S. Bonner-Weir, Y. Ogawa, J. P. Vacanti, and G. C. Weir, “Outcome of subcutaneous islet transplantation improved by polymer device,” Transplantation, vol. 61, no. 11, pp. 1557–1561, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. D.-H. Chen, J.-C. Leu, and T.-C. Huang, “Transport and hydrolysis of urea in a reactor-separator combining an anion-exchange membrane and immobilized urease,” Journal of Chemical Technology and Biotechnology, vol. 61, no. 4, pp. 351–357, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. S. H. Hyon, W. I. Cha, Y. Ikada, M. Kita, Y. Ogura, and Y. Honda, “Poly(vinyl alcohol) hydrogels as soft contact lens material,” Journal of Biomaterials Science, vol. 5, no. 5, pp. 397–406, 1994. View at Scopus
  4. J. K. Li, N. Wang, and X. S. Wu, “Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery,” Journal of Controlled Release, vol. 56, no. 1–3, pp. 117–126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. M. T. Razzak, D. Darwis, Z. Zainuddin, and S. Sukirno, “Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing,” Radiation Physics and Chemistry, vol. 62, no. 1, pp. 107–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Yoshii, Y. Zhanshan, K. Isobe, K. Shinozaki, and K. Makuuchi, “Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing,” Radiation Physics and Chemistry, vol. 55, no. 2, pp. 133–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Yoshii, K. Makuuchi, D. Darwis, T. Iriawan, M. T. Razzak, and J. M. Rosiak, “Heat resistance poly(vinyl alcohol) hydrogel,” Radiation Physics and Chemistry, vol. 46, no. 2, pp. 169–174, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Ossipov and J. Hilborn, “Poly(vinyl alcohol)-based hydrogels formed by ‘click chemistry’,” Macromolecules, vol. 39, no. 5, pp. 1709–1718, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. H. K. Purss, G. G. Qiao, and D. H. Solomon, “Effect of “glutaraldehyde” functionality on network formation in poly(vinyl alcohol) membranes,” Journal of Applied Polymer Science, vol. 96, no. 3, pp. 780–792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Ajji, “Preparation of poly(vinyl alcohol) hydrogels containing citric or succinic acid using gamma radiation,” Radiation Physics and Chemistry, vol. 74, no. 1, pp. 36–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Benamer, M. Mahlous, A. Boukrif, B. Mansouri, and S. L. Youcef, “Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone),” Nuclear Instruments and Methods in Physics Research B, vol. 248, no. 2, pp. 284–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Martens and K. S. Anseth, “Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers,” Polymer, vol. 41, no. 21, pp. 7715–7722, 2000. View at Scopus
  13. N. A. Peppas and N. K. Mongia, “Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 43, no. 1, pp. 51–58, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Hatakeyema, J. Uno, C. Yamada, A. Kishi, and H. Hatakeyama, “Gel-sol transition of poly(vinyl alcohol) hydrogels formed by freezing and thawing,” Thermochimica Acta, vol. 431, no. 1-2, pp. 144–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Ricciardi, C. Gaillet, G. Ducouret, F. Lafuma, and F. Lauprêtre, “Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels,” Polymer, vol. 44, no. 11, pp. 3375–3380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Koyano, N. Koshizaki, H. Umehara, M. Nagura, and N. Minoura, “Surface states of PVA/chitosan blended hydrogels,” Polymer, vol. 41, no. 12, pp. 4461–4465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. W.-Y. Chuang, T.-H. Young, C.-H. Yao, and W.-Y. Chiu, “Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro,” Biomaterials, vol. 20, no. 16, pp. 1479–1487, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Chandy and C. P. Sharma, “Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes. Blood compatibility and permeability properties,” Journal of Applied Polymer Science, vol. 44, no. 12, pp. 2145–2156, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. H. Yang, M. J. Huang, and T. S. Yeh, “Preparation of poly (acrylic acid) modified polyurethane membrane for biomaterial by UV radiation without degassing,” Journal of Biomedical Materials Research, vol. 45, pp. 133–139, 1999.
  20. H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, “Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin,” Biomaterials, vol. 29, no. 26, pp. 3574–3582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H.G.l, “United States Patent,” 4055554, 1977.
  22. U. Gerber, U. Jucknischke, S. Putzien, and H.-L. Fuchsbauer, “A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense,” Biochemical Journal, vol. 299, no. 3, pp. 825–829, 1994. View at Scopus
  23. K. Yokoyama, N. Nio, and Y. Kikuchi, “Properties and applications of microbial transglutaminase,” Applied Microbiology and Biotechnology, vol. 64, no. 4, pp. 447–454, 2004.
  24. C. W. Yung, L. Q. Wu, J. A. Tullman, G. F. Payne, W. E. Bentley, and T. A. Barbari, “Transglutaminase crosslinked gelatin as a tissue engineering scaffold,” Journal of Biomedical Materials Research A, vol. 83, no. 4, pp. 1039–1046, 2007.
  25. M. Carmen Go'mez-Guillén, A. Isabel Sarabia, M. Teresa Solas, and P. Montero, “Effect of microbial transglutaminase on the functional properties of megrim (Lepidorhombus boscii) skin gelatin,” Journal of the Science of Food and Agriculture, vol. 81, no. 7, pp. 665–673, 2001.
  26. A. P. Rokhade, S. A. Agnihotri, S. A. Patil, N. N. Mallikarjuna, P. V. Kulkarni, and T. M. Aminabhavi, “Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine,” Carbohydrate Polymers, vol. 65, no. 3, pp. 243–252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. P. Rokhade, S. A. Patil, and T. M. Aminabhavi, “Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir,” Carbohydrate Polymers, vol. 67, no. 4, pp. 605–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. L. H. Sperling, “Interpenetrating polymer networks and related materials,” Journal of Polymer Science Macromolecular Reviews, vol. 12, pp. 141–180, 1977. View at Scopus
  29. T. Kurokawa, H. Furukawa, W. Wang, Y. Tanaka, and J. P. Gong, “Formation of a strong hydrogel-porous solid interface via the double-network principle,” Acta Biomaterialia, vol. 6, no. 4, pp. 1353–1359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. E. Folk, “[127] Transglutaminase (guinea pig liver),” Methods in Enzymology, vol. 17, pp. 889–894, 1970. View at Publisher · View at Google Scholar · View at Scopus
  31. Chinese standards GB/T, 5009. 3-2003, D.o.m.i.f.
  32. M. Frydrych, C. Wan, R. Stengler, K. U. O'Kelly, and B. Chen, “Structure and mechanical properties of gelatin/sepiolite nanocomposite foams,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 9103–9111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. R. Hari and K. Sreenivasan, “Preparation of polyvinyl alcohol hydrogel through the selective complexation of amorphous phase,” Journal of Applied Polymer Science, vol. 82, no. 1, pp. 143–149, 2001.
  34. G. Mickisch, S. Fajta, G. Keilhauer, E. Schlick, R. Tschada, and P. A lken, “Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT),” Urological Research, vol. 18, no. 2, pp. 131–136, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. American National Standard, Biological Evaluation of Medical Devices-Part 5: Tests for Cytotoxicity, 1999.
  36. J. Fukuda, A. Khademhosseini, Y. Yeo et al., “Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures,” Biomaterials, vol. 27, no. 30, pp. 5259–5267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. J. Horobin, K. M. Shakesheff, and D. I. Pritchard, “Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions,” Journal of Investigative Dermatology, vol. 126, pp. 1410–1418, 2006. View at Publisher · View at Google Scholar