About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 568479, 7 pages
http://dx.doi.org/10.1155/2013/568479
Research Article

The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

1Department of Metallurgy Education, Gazi Vocational High School, Directorate of National Education, 23100 Elazig, Turkey
2Department of Surgery, Faculty of Veterinary, Firat University, 23119 Elazig, Turkey

Received 29 January 2013; Accepted 21 March 2013

Academic Editor: Hamdy Doweidar

Copyright © 2013 Yusuf Er and Emine Unsaldi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Murugan and S. Ramakrishna, “Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite,” Biomaterials, vol. 25, no. 17, pp. 3829–3835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sarsilmaz, N. Orhan, E. Unsaldi, A. S. Durmus, and N. Colakoglu, “A polyethylene-high proportion hydroxyapatite implant and its investigation in vivo,” Acta of Bioengineering and Biomechanics, vol. 9, no. 2, pp. 9–16, 2007. View at Scopus
  3. R. Murugan and S. Ramakrishna, “Development of nanocomposites for bone grafting,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2385–2406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Anselme, “Osteoblast adhesion on biomaterials,” Biomaterials, vol. 21, no. 7, pp. 667–681, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. L. D. Zardiackas, L. D. Dillon, D. W. Mitchell, L. A. Nunnery, and R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam,” Journal of Biomedical Materials Research, vol. 58, no. 2, pp. 180–187, 2001. View at Publisher · View at Google Scholar
  6. A. J. T. Clemow, A. M. Weinstein, J. J. Klawitter, J. J. Koeneman, and J. J. Anderson, “Interface mechanics of porous titanium implants,” Journal of Biomedical Materials Research, vol. 15, no. 1, pp. 73–82, 1981. View at Scopus
  7. C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scripta Materialia, vol. 45, no. 10, pp. 1147–1153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, and Y. Kuboki, “Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis,” Journal of Biochemistry, vol. 121, no. 2, pp. 317–324, 1997. View at Scopus
  9. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1997.
  10. M. W. Christopher, M. S. Richard, J. P. F. Garry, and J. D. Alison, “Dental materials,” Dental, vol. 982, p. 10, 2006.
  11. Y. Yamada, K. Shimojima, Y. Sakaguchi et al., “Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3,” Journal of Materials Science Letters, vol. 18, no. 18, pp. 1477–1480, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Yamada, K. Shimojima, Y. Sakaguchi et al., “Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure,” Materials Science and Engineering A, vol. 280, no. 1, pp. 225–228, 2000. View at Scopus
  13. D. T. Queheillalt, Y. Katsumura, and H. N. G. Wadley, “Synthesis of stochastic open cell Ni-based foams,” Scripta Materialia, vol. 50, no. 3, pp. 313–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, no. 18, pp. 1621–1639, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Curran, Metal Foams, Cambridge University Press, Cambridge, UK, 2001.
  16. B. Y. Li, L. J. Rong, Y. Y. Li, and V. E. Gjunter, “Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure,” Acta Materialia, vol. 48, no. 15, pp. 3895–3904, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen, “Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute,” Biomaterials, vol. 24, no. 25, pp. 4691–4697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. N. Cornell and J. M. Lane, “Current understanding of osteoconduction in bone regeneration,” Clinical Orthopaedics and Related Research, no. 355, pp. S267–S273, 1998. View at Scopus