About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 738954, 8 pages
http://dx.doi.org/10.1155/2013/738954
Research Article

Susceptibility to Stress Corrosion of Laser-Welded Composite Arch Wire in Acid Artificial Saliva

Orthodontic Department, Jilin University, No. 1500 Qinghua Street, Changchun 130021, China

Received 21 January 2013; Revised 22 May 2013; Accepted 30 May 2013

Academic Editor: Hamdy Doweidar

Copyright © 2013 Chao Zhang and Xinhua Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Chan, H. C. Man, and T. M. Yue, “Effect of post-weld heat-treatment on the oxide film and corrosion behaviour of laser-welded shape memory NiTi wires,” Corrosion Science, vol. 56, pp. 158–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. N. B. Morgan, “Medical shape memory alloy applications—the market and its products,” Materials Science and Engineering A, vol. 378, no. 1-2, pp. 16–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. A. Brantley, Orthodontic Materials: Scientific and Clinical Aspects, Thieme, New York, NY, USA, 2001.
  4. R. P. Kusy, “A review of contemporary archwires: their properties and characteristics,” Angle Orthodontist, vol. 67, no. 3, pp. 197–207, 1997. View at Scopus
  5. S. A. Thompson, “An overview of nickel-titanium alloys used in dentistry,” International Endodontic Journal, vol. 33, no. 4, pp. 297–310, 2000. View at Scopus
  6. N. J. Noolu, H. W. Kerr, Y. Zhou, and J. Xie, “Laser weldability of Pt and Ti alloys,” Materials Science and Engineering A, vol. 397, no. 1-2, pp. 8–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Q. Sun and H. M. Li, “A new method of TINi shape memory alloy and austenitic stainless steel different Kind of material connection,” CN Patent, CNIO2152017, 2011.
  8. N. Schiff, B. Grosgogeat, M. Lissac, and F. Dalard, “Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires,” Biomaterials, vol. 25, no. 19, pp. 4535–4542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Rondelli, “Corrosion resistance tests on NiTi shape memory alloy,” Biomaterials, vol. 17, no. 20, pp. 2003–2008, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Okazaki and E. Gotoh, “Metal release from stainless steel, Co-Cr-Mo-Ni-Fe and Ni-Ti alloys in vascular implants,” Corrosion Science, vol. 50, no. 12, pp. 3429–3438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Liu, P. K. Chu, G. Lin, and D. Yang, “Effects of Ti/TiN multilayer on corrosion resistance of nickel-titanium orthodontic brackets in artificial saliva,” Corrosion Science, vol. 49, no. 10, pp. 3783–3796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-H. Huang, “Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva,” Journal of Biomedical Materials Research A, vol. 66, no. 4, pp. 829–839, 2003. View at Scopus
  13. H.-H. Huang, “Surface characterizations and corrosion resistance of nickel-titanium orthodontic archwires in artificial saliva of various degrees of acidity,” Journal of Biomedical Materials Research A, vol. 74, no. 4, pp. 629–639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. C. Wataha, “Biocompatibility of dental casting alloys: a review,” Journal of Prosthetic Dentistry, vol. 83, no. 2, pp. 223–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Setcos, A. Babaei-Mahani, L. D. Silvio, I. A. Mjör, and N. H. F. Wilson, “The safety of nickel containing dental alloys,” Dental Materials, vol. 22, no. 12, pp. 1163–1168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Wang, N. Li, G. Rao, E.-H. Han, and W. Ke, “Stress corrosion cracking of NiTi in artificial saliva,” Dental Materials, vol. 23, no. 2, pp. 133–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-K. Liu, T.-M. Lee, and I.-H. Liu, “Effect of loading force on the dissolution behavior and surface properties of nickel-titanium orthodontic archwires in artificial saliva,” The American Journal of Orthodontics and Dentofacial Orthopedics, vol. 140, no. 2, pp. 166–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Ralph, T. D. Bold, and M. J. Johnson, Corrosion of Stainless Steel, Materials Park, Ohio, OH, USA, 1987.
  19. K. Y. Chiu, F. T. Cheng, and H. C. Man, “Corrosion behavior of AISI 316L stainless steel surface-modified with NiTi,” Surface and Coatings Technology, vol. 200, no. 20-21, pp. 6054–6061, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Wever, A. G. Veldhuizen, J. de Vries, H. J. Busscher, D. R. A. Uges, and J. R. van Horn, “Electrochemical and surface characterization of a nickel-titanium alloy,” Biomaterials, vol. 19, no. 7–9, pp. 761–769, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. K.-T. Oh, C.-J. Hwang, Y.-S. Park, and K.-N. Kim, “In vitro corrosion resistance of orthodontic super stainless steel wire. The effects of stress relieving heat-treatment,” Journal of the Electrochemical Society, vol. 149, no. 9, pp. B414–B421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. B. E. Wilde, “A critical appraisal of some popular laboratory electron chemical tests for predicting the localized corrosion resistance of stainless alloys in seawater,” Corrosion, vol. 28, no. 8, pp. 283–291, 1972. View at Scopus
  23. A. Anderko, N. Sridhar, and D. S. Dunn, “A general model for the repassivation potential as a function of multiple aqueous solution species,” Corrosion Science, vol. 46, no. 7, pp. 1583–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kim and J. W. Johnson, “Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires,” Angle Orthodontist, vol. 69, no. 1, pp. 39–44, 1999. View at Scopus
  25. G. Rondelli and B. Vicentini, “Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite,” Journal of Biomedical Materials Research, vol. 51, no. 1, pp. 47–54, 2000.
  26. D. Upadhyay, M. A. Panchal, R. S. Dubey, and V. K. Srivastava, “Corrosion of alloys used in dentistry: a review,” Materials Science and Engineering A, vol. 432, no. 1-2, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus