About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 497219, 11 pages
http://dx.doi.org/10.1155/2010/497219
Research Article

Immunization with a Mixture of HIV Env DNA and VLP Vaccines Augments Induction of CD8 T Cell Responses

1Department of Microbiology & Immunology, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Room 3086 Rollins Research Center, Atlanta, GA 30322, USA
2Agriculture Ministry Key Laboratory of Veterinary Public Health, Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, China
3Central Laboratory, Tangdu Hospital, The Fourth Military Medical University, No. 1 Xinsi Road, Xi'an 710038, China
4Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, No. 1 Xinsi Road, Xi'an 710038, China

Received 30 November 2009; Revised 27 February 2010; Accepted 2 March 2010

Academic Editor: Hanchun Yang

Copyright © 2010 Ling Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Cohen, “Clinical research. A setback and an advance on the AIDS vaccine front,” Science, vol. 300, no. 5616, pp. 28–29, 2003.
  2. R. N. Germain and D. H. Margulies, “The biochemistry and cell biology and antigen processing and presentation,” Annual Review of Immunology, vol. 11, pp. 403–450, 1993.
  3. P. Pitisuttithum, P. Gilbert, M. Gurwith, et al., “Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand,” Journal of Infectious Diseases, vol. 194, no. 12, pp. 1661–1671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. Amara, F. Villinger, J. D. Altman, et al., “Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine,” Science, vol. 292, no. 5514, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. H. Barouch, et al., “Vaccine-elicited immune responses prevent clinical AIDS in SHIV(89.6P)-infected rhesus monkeys,” Immunology Letters, vol. 79, no. 1-2, pp. 57–61, 2001.
  6. N. F. Rose, P. A. Marx, A. Luckay, et al., “An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants,” Cell, vol. 106, no. 5, pp. 539–549, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. Shiver, T.-M. Fu, L. Chen, et al., “Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity,” Nature, vol. 415, no. 6869, pp. 331–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Miedema, “A brief history of HIV vaccine research: stepping back to the drawing board?” AIDS, vol. 22, no. 14, pp. 1699–1703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Burton, R. C. Desrosiers, R. W. Doms, et al., “HIV vaccine design and the neutralizing antibody problem,” Nature Immunology, vol. 5, no. 3, pp. 233–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. N. L. Letvin and B. D. Walker, “Immunopathogenesis and immunotherapy in AIDS virus infections,” Nature Medicine, vol. 9, no. 7, pp. 861–866, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. McMichael and T. Hanke, “HIV vaccines 1983–2003,” Nature Medicine, vol. 9, no. 7, pp. 874–880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Nabel, “Challenges and opportunities for development of an AIDS vaccine,” Nature, vol. 410, no. 6831, pp. 1002–1007, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Donnelly, J. B. Ulmer, J. W. Shiver, and M. A. Liu, “DNA vaccines,” Annual Review of Immunology, vol. 15, pp. 617–648, 1997.
  14. S. Gurunathan, D. M. Klinman, and R. A. Seder, “DNA vaccines: immunology, application, and optimization,” Annual Review of Immunology, vol. 18, pp. 927–974, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Shedlock and D. B. Weiner, “DNA vaccination: antigen presentation and the induction of immunity,” Journal of Leukocyte Biology, vol. 68, no. 6, pp. 793–806, 2000. View at Scopus
  16. M. Dupuis, K. Denis-Mize, C. Woo, et al., “Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice,” Journal of Immunology, vol. 165, no. 5, pp. 2850–2858, 2000. View at Scopus
  17. R. Noad and P. Roy, “Virus-like particles as immunogens,” Trends in Microbiology, vol. 11, no. 9, pp. 438–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Yang, L. Ye, and R. W. Compans, “Protection against filovirus infection: virus-like particle vaccines,” Expert Review of Vaccines, vol. 7, no. 3, pp. 333–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Yao, Z. Bu, A. Vzorov, C. Yang, and R. W. Compans, “Virus-like particle and DNA-based candidate AIDS vaccines,” Vaccine, vol. 21, no. 7-8, pp. 638–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. F. Bachmann, U. H. Rohrer, T. M. Kundig, K. Burki, H. Hengartner, and R. M. Zinkernagel, “The influence of antigen organization on B cell responsiveness,” Science, vol. 262, no. 5138, pp. 1448–1451, 1993. View at Scopus
  21. M. F. Bachmann, H. Hengartner, and R. M. Zinkernagel, “T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction?” European Journal of Immunology, vol. 25, no. 12, pp. 3445–3451, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Deml, G. Kratochwil, N. Osterrieder, R. Knüchel R, H. Wolf, and R. Wagner, “Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55(gag) virus-like particles by an Epstein-Barr virus gp220/350-derived transmembrane domain,” Virology, vol. 235, no. 1, pp. 10–25, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Notka, C. Stahl-Hennig, U. Dittmer, H. Wolf, and R. Wagner, “Accelerated clearance of SHIV in rhesus monkeys by virus-like particle vaccines is dependent on induction of neutralizing antibodies,” Vaccine, vol. 18, no. 3-4, pp. 291–301, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Deml, C. Speth, M. P. Dierich, H. Wolf, and R. Wagner, “Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses,” Molecular Immunology, vol. 42, no. 2, pp. 259–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. X. Doan, M. Li, C. Chen, and Q. Yao, “Virus-like particles as HIV-1 vaccines,” Reviews in Medical Virology, vol. 15, no. 2, pp. 75–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Bu, L. Ye, A. Vzorov, D. Taylor, R. W. Compans, and C. Yang, “Enhancement of immunogenicity of an HIV Env DNA vaccine by mutation of the Tyr-based endocytosis motif in the cytoplasmic domain,” Virology, vol. 328, no. 1, pp. 62–73, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. V. Yamshchikov, G. D. Ritter, M. Vey, and R. W. Compans, “Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system,” Virology, vol. 214, no. 1, pp. 50–58, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Yao, F. M. Kuhlmann, R. Eller, R. W. Compans, and C. Chen, “Production and characterization of simian-human immunodeficiency virus-like particles,” AIDS Research and Human Retroviruses, vol. 16, no. 3, pp. 227–236, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Bu, L. Ye, M. J. Skeen, H. K. Ziegler, R. W. Compans, and C. Yang, “Enhancement of immune responses to an HIV env DNA vaccine by a C-terminal segment of listeriolysin O,” AIDS Research and Human Retroviruses, vol. 19, no. 5, pp. 409–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Ye, Z. Bu, A. Vzorov, D. Taylor, R. W. Compans, and C. Yang, “Surface stability and immunogenicity of the human immunodeficiency virus envelope glycoprotein: role of the cytoplasmic domain,” Journal of Virology, vol. 78, no. 24, pp. 13409–13419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, et al., “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” Journal of Immunological Methods, vol. 223, no. 1, pp. 77–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Yao, R. Zhang, L. Guo, M. Li, and C. Chen, “Th cell-independent immune responses to chimeric hemagglutinin/simian human immunodeficiency virus-like particles vaccine,” Journal of Immunology, vol. 173, no. 3, pp. 1951–1958, 2004. View at Scopus
  33. M. P. Girard, S. K. Osmanov, and M. P. Kieny, “A review of vaccine research and development: the human immunodeficiency virus (HIV),” Vaccine, vol. 24, no. 19, pp. 4062–4081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. C. Montefiori, J. T. Safrit, S. L. Lydy, et al., “Induction of neutralizing antibodies and Gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in rhesus macaques,” Journal of Virology, vol. 75, no. 13, pp. 5879–5890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Boyle, A. Silva, J. L. Brady, and A. M. Lew, “DNA immunization: induction of higher avidity antibody and effect of route on T cell cytotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14626–14631, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Drew, M. Lightowlers, and R. A. Strugnell, “Humoral immune responses to DNA vaccines expressing secreted, membrane bound and non-secreted forms of the Taenia ovis 45W antigen,” Vaccine, vol. 18, no. 23, pp. 2522–2532, 2000. View at Scopus
  37. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989.
  38. D. R. Milich, F. Schodel, J. L. Hughes, J. E. Jones, and D. L. Peterson, “The hepatitis B virus core and e antigens elicit different Th cell subsets: antigen structure can affect Th cell phenotype,” Journal of Virology, vol. 71, no. 3, pp. 2192–2201, 1997. View at Scopus
  39. S. Zhang, R. Cubas, M. Li, C. Chen, and Q. Yao, “Virus-like particle vaccine activates conventional B2 cells and promotes B cell differentiation to IgG2a producing plasma cells,” Molecular Immunology, vol. 46, no. 10, pp. 1988–2001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Romagnani, M. H. Kaplan, and M. J. Grusby, “Understanding the role of Th1/Th2 cells in infection,” Trends in Microbiology, vol. 4, no. 12, pp. 470–473, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Gregoriadis, A. Bacon, W. Caparros-Wanderley, and B. McCormack, “A role for liposomes in genetic vaccination,” Vaccine, vol. 20, supplement 5, pp. B1–B9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. Da Silva, M. P. Velders, J. D. Nieland, J. T. Schiller, B. J. Nickoloff, and W. M. Kast, “Physical interaction of human papillomavirus virus-like particles with immune cells,” International Immunology, vol. 13, no. 5, pp. 633–641, 2001. View at Scopus
  43. C. Ruedl, T. Storni, F. Lechner, T. Bachi, and M. F. Bachmann, “Cross-presentation of virus-like particles by skin-derived CD8- dendritic cells: a dispensable role for TAP,” European Journal of Immunology, vol. 32, no. 3, pp. 818–825, 2002. View at Publisher · View at Google Scholar · View at Scopus