About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 184393, 8 pages
http://dx.doi.org/10.1155/2011/184393
Review Article

Mammalian Models of Duchenne Muscular Dystrophy: Pathological Characteristics and Therapeutic Applications

1Department of Medicine (Neurology and Rheumatology), School of Medicine Shinshu University, 3-1-1 Ahahi, Matsumoto 390-8621, Japan
2Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan

Received 14 October 2010; Accepted 19 December 2010

Academic Editor: Andrea Vecchione

Copyright © 2011 Akinori Nakamura and Shin'ichi Takeda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Moser, “Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention,” Human Genetics, vol. 66, no. 1, pp. 17–40, 1984. View at Scopus
  2. E. P. Hoffman, R. H. Brown Jr., and L. M. Kunkel, “Dystrophin: the protein product of the Duchenne muscular dystrophy locus,” Cell, vol. 51, no. 6, pp. 919–928, 1987. View at Scopus
  3. K. P. Campbell, “Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage,” Cell, vol. 80, no. 5, pp. 675–679, 1995. View at Scopus
  4. G. D. Shelton and E. Engvall, “Canine and feline models of human inherited muscle diseases,” Neuromuscular Disorders, vol. 15, no. 2, pp. 127–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. W. Yeung, N. P. Whitehead, T. M. Suchyna, P. A. Gottlieb, F. Sachs, and D. G. Allen, “Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse,” Journal of Physiology, vol. 562, no. 2, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Koening, A. H. Beggs, M. Moyer et al., “The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion,” American Journal of Human Genetics, vol. 45, no. 4, pp. 498–506, 1989. View at Scopus
  7. C. Wilson and A. D. Keefe, “Building oligonucleotide therapeutics using non-natural chemistries,” Current Opinion in Chemical Biology, vol. 10, no. 6, pp. 607–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Karkare and D. Bhatnagar, “Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino,” Applied Microbiology and Biotechnology, vol. 71, no. 5, pp. 575–586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Yoshimura, M. Sakamoto, M. Ikemoto et al., “AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype,” Molecular Therapy, vol. 10, no. 5, pp. 821–828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Gregorevic, J. M. Allen, E. Minami et al., “rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice,” Nature Medicine, vol. 12, no. 7, pp. 787–789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. R. Coulton, N. A. Curtin, J. E. Morgan, and T. A. Partridge, “The mdx mouse skeletal muscle myopathy: II. Contractile properties,” Neuropathology and Applied Neurobiology, vol. 14, no. 4, pp. 299–314, 1988. View at Scopus
  12. W. B. Im, S. F. Phelps, E. H. Copen, E. G. Adams, J. L. Slightom, and J. S. Chamberlain, “Differential expression of dystrophin isoforms in strains of mdx mice with different mutations,” Human Molecular Genetics, vol. 5, no. 8, pp. 1149–1153, 1996. View at Scopus
  13. E. Araki, K. Nakamura, K. Nakao et al., “Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in duchenne muscular dystrophy,” Biochemical and Biophysical Research Communications, vol. 238, no. 2, pp. 492–497, 1997. View at Publisher · View at Google Scholar
  14. A. E. Deconinck, J. A. Rafael, J. A. Skinner et al., “Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy,” Cell, vol. 90, no. 4, pp. 717–727, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Bulfield, W. G. Siller, P. A. L. Wight, and K. J. Moore, “X chromosome-linked muscular dystrophy (mdx) in the mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 4 I, pp. 1189–1192, 1984. View at Scopus
  16. J. Dangain and G. Vrbova, “Muscle development in mdx mutant mice,” Muscle and Nerve, vol. 7, no. 9, pp. 700–704, 1984. View at Scopus
  17. Y. Tanabe, K. Esaki, and T. Nomura, “Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse,” Acta Neuropathologica, vol. 69, no. 1-2, pp. 91–95, 1986. View at Scopus
  18. Q. L. Lu, C. J. Mann, F. Lou et al., “Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse,” Nature Medicine, vol. 9, no. 8, pp. 1009–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Wells, “Therapeutic restoration of dystrophin expression in Duchenne muscular dystrophy,” Journal of Muscle Research and Cell Motility, vol. 27, no. 5-7, pp. 387–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Fletcher, K. Honeyman, A. M. Fall, P. L. Harding, R. D. Johnsen, and S. D. Wilton, “Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligunucleotide,” Journal of Gene Medicine, vol. 8, no. 2, pp. 207–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Jearawiriyapaisarn, H. M. Moulton, B. Buckley et al., “Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice,” Molecular Therapy, vol. 16, no. 9, pp. 1624–1629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Goyenvalle, A. Vulin, F. Fougerousse et al., “Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping,” Science, vol. 306, no. 5702, pp. 1796–1799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Gregorevic, M. J. Blankinship, J. M. Allen et al., “Systemic delivery of genes to striated muscles using adeno-associated viral vectors,” Nature Medicine, vol. 10, no. 8, pp. 828–834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Wang, T. Zhu, C. Qiao et al., “Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart,” Nature Biotechnology, vol. 23, no. 3, pp. 321–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. T. Bish, K. Morine, M. M. Sleeper et al., “Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat,” Human Gene Therapy, vol. 19, no. 12, pp. 1359–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kameya, E. Araki, M. Katsuki et al., “Dp260 disrupted mice revealed prolonged implicit time of the b-wave in ERG and loss of accumulation of β-dystroglycan in the outer plexiform layer of the retina,” Human Molecular Genetics, vol. 6, no. 13, pp. 2195–2203, 1997. View at Scopus
  27. A. Aartsma-Rus, I. Fokkema, J. Verschuuren et al., “Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations,” Human Mutation, vol. 30, no. 3, pp. 293–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Kinali, V. Arechavala-Gomeza, L. Feng et al., “Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study,” The Lancet Neurology, vol. 8, no. 10, pp. 918–928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. T. J. M. Helderman-van den Enden, C. S. M. Straathof, A. Aartsma-Rus et al., “Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients,” Neuromuscular Disorders, vol. 20, no. 4, pp. 251–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. van Deutekom, A. A. Janson, I. B. Ginjaar et al., “Local dystrophin restoration with antisense oligonucleotide PRO051,” The New England Journal of Medicine, vol. 357, no. 26, pp. 2677–2686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Muntoni, K. Bushby, and G. Van Ommen, “128th ENMC International Workshop on 'Preclinical optimization and phase I/II clinical trials using antisense oligonucleotides in Duchenne muscular dystrophy' 22-24 October 2004, Naarden, The Netherlands,” Neuromuscular Disorders, vol. 15, no. 6, pp. 450–457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Aoki, A. Nakamura, T. Yokota et al., “In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse,” Molecular Therapy, vol. 18, no. 11, pp. 1995–2005, 2010. View at Publisher · View at Google Scholar
  33. N. J. H. Sharp, J. N. Kornegay, S. D. van Camp et al., “An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy,” Genomics, vol. 13, no. 1, pp. 115–121, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Winand, D. Pradham, and B. Cooper, “Molecular characterization of severe Duchenne-type muscular dystrophy in a family of Rottwiler dogs,” in Molecular Mechanism of Neuromuscular Disease, Muscular Dystrophy Association, Tucson, Ariz, USA, 1994.
  35. S. J. Schatzberg, N. J. Olby, M. Breen et al., “Molecular analysis of a spontaneous dystrophin 'knockout' dog,” Neuromuscular Disorders, vol. 9, no. 5, pp. 289–295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. G. L. Walmsley, V. Arechavala-Gomeza, M. Fernandez-Fuente et al., “A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping,” PloS one, vol. 5, no. 1, Article ID e8647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Cooper, N. J. Winand, H. Stedman et al., “The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs,” Nature, vol. 334, no. 6178, pp. 154–156, 1988. View at Scopus
  38. B. A. Valentine, B. J. Cooper, A. De Lahunta, R. O'Quinn, and J. T. Blue, “Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies,” Journal of the Neurological Sciences, vol. 88, no. 1-3, pp. 69–81, 1988. View at Scopus
  39. F. Nguyen, Y. Cherel, L. Guigand, I. Goubault-Leroux, and M. Wyers, “Muscle lesions associated with dystrophin deficiency in neonatal golden retriever puppies,” Journal of Comparative Pathology, vol. 126, no. 2-3, pp. 100–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. N. S. Moise, B. A. Valentine, C. A. Brown et al., “Duchenne's cardiomyopathy in a canine model: electrocardiographic and echocardiographic studies,” Journal of the American College of Cardiology, vol. 17, no. 3, pp. 812–820, 1991. View at Scopus
  41. J. K. Perloff, W. C. Roberts, A. C. de Leon Jr., and D. O'Doherty, “The distinctive electrocardiogram of Duchenne's progressive muscular dystrophy. An electrocardiographic-pathologic correlative study,” The American Journal of Medicine, vol. 42, no. 2, pp. 179–188, 1967. View at Scopus
  42. J. M. Howell, S. Fletcher, B. A. Kakulas, M. O'Hara, H. Lochmuller, and G. Karpati, “Use of the dog model for Duchenne muscular dystrophy in gene therapy trials,” Neuromuscular Disorders, vol. 7, no. 5, pp. 325–328, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Howell, H. Lochmüller, A. O'Hara et al., “High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression,” Human Gene Therapy, vol. 9, no. 5, pp. 629–634, 1998. View at Scopus
  44. J. N. Kornegay, J. Li, J. R. Bogan et al., “Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs,” Molecular Therapy, vol. 19, no. 8, pp. 1501–1508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. R. J. Bartlett, S. Stockinger, M. M. Denis et al., “In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide,” Nature Biotechnology, vol. 18, no. 6, pp. 615–622, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. G. McClorey, H. M. Moulton, P. L. Iversen, S. Fletcher, and S. D. Wilton, “Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD,” Gene Therapy, vol. 13, no. 19, pp. 1373–1381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Shimatsu, K. Katagiri, T. Furuta et al., “Canine X-linked muscular dystrophy in Japan (CXMD),” Experimental Animals, vol. 52, no. 2, pp. 93–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Shimatsu, M. Yoshimura, K. Yuasa et al., “Major clinical and histopathological characteristics of canine X-linked muscular dystrophy in Japan, CXMD,” Acta Myologica, vol. 24, no. 2, pp. 145–154, 2005. View at Scopus
  49. N. Yugeta, N. Urasawa, Y. Fujii et al., “Cardiac involvement in Beagle-based canine X-linked muscular dystrophy in Japan (CXMD): electrocardiographic, echocardiographic, and morphologic studies,” BMC Cardiovascular Disorders, vol. 6, article 47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Urasawa, M. R. Wada, N. Machida et al., “Selective vacuolar degeneration in dystrophin-deficient canine Purkinje fibers despite preservation of dystrophin-associated proteins with overexpression of Dp71,” Circulation, vol. 117, no. 19, pp. 2437–2448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Yokota, Q. L. Lu, T. Partridge et al., “Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs,” Annals of Neurology, vol. 65, no. 6, pp. 667–676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Saito, A. Nakamura, Y. Aoki et al., “Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient,” PLoS One, vol. 5, no. 8, Article ID e12239, 2010. View at Publisher · View at Google Scholar
  53. K. Yuasa, M. Yoshimura, N. Urasawa et al., “Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products,” Gene Therapy, vol. 14, no. 17, pp. 1249–1260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Ohshima, J. H. Shin, K. Yuasa et al., “Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle,” Molecular Therapy, vol. 17, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Alter, F. Lou, A. Rabinowitz et al., “Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology,” Nature Medicine, vol. 12, no. 2, pp. 175–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Aartsma-Rus, A. A. M. Janson, W. E. Kaman et al., “Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense,” American Journal of Human Genetics, vol. 74, no. 1, pp. 83–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Arechavala-Gomeza, I. R. Graham, L. J. Popplewell et al., “Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle,” Human Gene Therapy, vol. 18, no. 9, pp. 798–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Nakamura and S. Takeda, “Exon-skipping therapy for Duchenne muscular dystrophy,” Neuropathology, vol. 29, no. 4, pp. 494–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. H. Vos, J. S. van der Linde-Sipman, and S. A. Goedegebuure, “Dystrophy-like myopathy in the cat,” Journal of Comparative Pathology, vol. 96, no. 3, pp. 335–341, 1986. View at Scopus
  60. J. L. Carpenter, E. P. Hoffmann, F. C. A. Romanul et al., “Feline muscular dystrophy with dystrophin deficiency,” The American Journal of Pathology, vol. 135, no. 5, pp. 909–919, 1989. View at Scopus
  61. F. P. Gaschen, E. P. Hoffman, J. R. M. Gorospe et al., “Dystrophin deficiency causes lethal muscle hypertrophy in cats,” Journal of the Neurological Sciences, vol. 110, no. 1-2, pp. 149–159, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. N. J. Winand, M. Edwards, D. Pradhan, C. A. Berian, and B. J. Cooper, “Deletion of the dystrophin muscle promoter in feline muscular dystrophy,” Neuromuscular Disorders, vol. 4, no. 5-6, pp. 433–445, 1994. View at Publisher · View at Google Scholar · View at Scopus