About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 197636, 11 pages
http://dx.doi.org/10.1155/2011/197636
Review Article

Biology of Obesity: Lessons from Animal Models of Obesity

Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan

Received 14 September 2010; Accepted 13 December 2010

Academic Editor: Monica Fedele

Copyright © 2011 Keizo Kanasaki and Daisuke Koya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kopelman, “Health risks associated with overweight and obesity,” Obesity Reviews, vol. 8, no. 1, pp. 13–17, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. World Health Organization, “Fact sheet: Obesity and overweight,” http://www.who.int/hpr/gs.fs.obesity.shtml.
  3. D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis, “The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis,” BMC Public Health, vol. 9, article 88, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. W. V. Brown, K. Fujioka, P. W. Wilson, and K. A. Woodworth, “Obesity: why be concerned?” The American Journal of Medicine, vol. 122, no. 4, pp. S4–S11, 2009. View at Scopus
  5. S. J. Bultman, E. J. Michaud, and R. P. Woychik, “Molecular characterization of the mouse agouti locus,” Cell, vol. 71, no. 7, pp. 1195–1204, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Lu, D. Willard, and D. Willard, “Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor,” Nature, vol. 371, no. 6500, pp. 799–802, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. E. Millar, M. W. Miller, M. E. Stevens, and G. S. Barsh, “Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated,” Development, vol. 121, no. 10, pp. 3223–3232, 1995. View at Scopus
  8. N. Matsunaga, V. Virador, and V. Virador, “In situ localization of agouti signal protein in murine skin using immunohistochemistry with an ASP-specific antibody,” Biochemical and Biophysical Research Communications, vol. 270, no. 1, pp. 176–182, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. E. J. Michaud, S. J. Bultman, L. J. Stubbs, and R. P. Woychik, “The embryonic lethality of homozygous lethal yellow mice (A(y)/A(y)) is associated with the disruption of a novel RNA-binding protein,” Genes and Development, vol. 7, no. 7 A, pp. 1203–1213, 1993. View at Scopus
  10. D. M. J. Duhl, M. E. Stevens, H. Vrieling, P. J. Saxon, M. W. Miller, C. J. Epstein, and G. S. Barsh, “Pleiotropic effects of the mouse lethal yellow (A(y)) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs,” Development, vol. 120, no. 6, pp. 1695–1708, 1994. View at Scopus
  11. E. J. Michaud, S. J. Bultman, M. L. Klebig, M. J. Van Vugt, L. J. Stubbs, L. B. Russell, and R. P. Woychik, “A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (A(y)) mutation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 7, pp. 2562–2566, 1994. View at Scopus
  12. M. L. Klebig, J. E. Wilkinson, J. G. Geisler, and R. P. Woychik, “Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4728–4732, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. R. L. Mynatt, R. J. Miltenberger, M. L. Klebig, M. B. Zemel, J. E. Wilkinson, W. O. Wilkison, and R. P. Woychik, “Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 919–922, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Y. Kwon, S. J. Bultman, and S. J. Bultman, “Molecular structure and chromosomal mapping of the human homolog of the agouti gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9760–9764, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. B. D. Wilson, M. M. Ollmann, L. Kang, M. Stoffel, G. I. Bell, and G. S. Barsh, “Structure and function of ASP, the human homolog of the mouse agouti gene,” Human Molecular Genetics, vol. 4, no. 2, pp. 223–230, 1995. View at Scopus
  16. S. R. Smith, B. Gawronska-Kozak, L. Janderová, T. Nguyen, A. Murrel, J. M. Stephens, and R. L. Mynatt, “Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes,” Diabetes, vol. 52, no. 12, pp. 2914–2922, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Z. Xue, W. O. Wilkison, R. L. Mynatt, N. Moustaid, M. Goldman, and M. B. Zemel, “The agouti gene product stimulates pancreatic β-cell Ca2+ signaling and insulin release,” Physiological Genomics, vol. 1999, no. 1, pp. 11–19, 1999. View at Scopus
  18. G. T. Kucera, D. M. Bortner, and M. P. Rosenberg, “Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants,” Developmental Biology, vol. 173, no. 1, pp. 162–173, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. M. Ingalls, M. M. Dickie, and G. D. Snell, “Obese, a new mutation in the house mouse,” The Journal of Heredity, vol. 41, no. 12, pp. 317–318, 1950. View at Scopus
  20. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. P. Hummel, M. M. Dickie, and D. L. Coleman, “Diabetes, a new mutation in the mouse,” Science, vol. 153, no. 3740, pp. 1127–1128, 1966. View at Scopus
  22. H. Chen, O. Charlat, and O. Charlat, “Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice,” Cell, vol. 84, no. 3, pp. 491–495, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. G. H. Lee, R. Proenca, J. M. Montez, K. M. Carroll, J. G. Darvishzadeh, J. I. Lee, and J. M. Friedman, “Abnormal splicing of the leptin receptor in diabetic mice,” Nature, vol. 379, no. 6566, pp. 632–635, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. Herberg and D. L. Coleman, “Laboratory animals exhibiting obesity and diabetes syndromes,” Metabolism, vol. 26, no. 1, pp. 59–99, 1977. View at Scopus
  25. H. S. Jürgens, A. Schürmann, R. Kluge, S. Ortmann, S. Klaus, H. G. Joost, and M. H. Tschöp, “Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice,” Physiological Genomics, vol. 25, no. 2, pp. 234–241, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. W. Suzuki, S. Iizuka, and S. Iizuka, “A new mouse model of spontaneous diabetes derived from ddY strain,” Experimental Animals, vol. 48, no. 3, pp. 181–189, 1999. View at Scopus
  27. I. Hirayama, Z. Yi, and Z. Yi, “Genetic analysis of obese diabetes in the TSOD mouse,” Diabetes, vol. 48, no. 5, pp. 1183–1191, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Iizuka, W. Suzuki, and W. Suzuki, “Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity,” Experimental Animals, vol. 54, no. 1, pp. 71–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. F. Allan, E. J. Eisen, and D. Pomp, “The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity,” Obesity Research, vol. 12, no. 9, pp. 1397–1407, 2004. View at Scopus
  30. M. Nakamura and K. Yamada, “Studies on a diabetic (KK) strain of the mouse,” Diabetologia, vol. 3, no. 2, pp. 212–221, 1967. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Igel, B. A. Taylor, S. J. Phillips, W. Becker, L. Herberg, and H. G. Joost, “Hyperleptinemia and leptin receptor variant Asp600Asn in the obese, hyperinsulinemic KK mouse strain,” Journal of Molecular Endocrinology, vol. 21, no. 3, pp. 337–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Shike, S. Hirose, M. Kobayashi, K. Funabiki, T. Shirai, and Y. Tomino, “Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model,” Diabetes, vol. 50, no. 8, pp. 1943–1948, 2001. View at Scopus
  33. H. Ikeda, “KK mouse,” Diabetes Research and Clinical Practice, vol. 24, supplement, pp. S313–S316, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Okazaki, Y. Saito, and Y. Saito, “Diabetic nephropathy in KK and KK-A mice,” Experimental Animals, vol. 51, no. 2, pp. 191–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. L. M. Zucker and T. F. Zucker, “Fatty, a new mutation in the rat,” Journal of Heredity, vol. 52, no. 6, pp. 275–278, 1961.
  36. L. M. Zucker and H. N. Antoniades, “Insulin and obesity in the Zucker genetically obese rat "fatty",” Endocrinology, vol. 90, no. 5, pp. 1320–1330, 1972. View at Scopus
  37. G. A. Bray, “The Zucker fatty rat: a review,” Federation Proceedings, vol. 36, no. 2, pp. 148–153, 1977. View at Scopus
  38. Y. Ogawa, H. Masuzaki, and H. Masuzaki, “Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty (fa/fa) rats,” Journal of Clinical Investigation, vol. 96, no. 3, pp. 1647–1652, 1995. View at Scopus
  39. J. E. Friedman, J. E. De Vente, R. G. Peterson, and G. L. Dohm, “Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa),” American Journal of Physiology, vol. 261, no. 6, pp. E782–E788, 1991. View at Scopus
  40. H. Ikeda, A. Shino, T. Matsuo, H. Iwatsuka, and Z. Suzuoki, “A new genetically obese-hyperglycemic rat (Wistar fatty),” Diabetes, vol. 30, no. 12, pp. 1045–1050, 1981. View at Scopus
  41. H. Matsui, M. Suzuki, R. Tsukuda, K. Iida, M. Miyasaka, and H. Ikeda, “Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically obese diabetic rat, Wistar fatty,” Diabetes Research and Clinical Practice, vol. 32, no. 1-2, pp. 1–9, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Imai, T. Satoh, and T. Satoh, “Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-β1,” Hypertension Research, vol. 26, no. 4, pp. 339–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Imai, N. Kudo, M. Koyama, and Y. Kawashima, “Effects of dehydroepiandrosterone on oleic acid accumulation in rat liver,” Biochemical Pharmacology, vol. 65, no. 10, pp. 1583–1591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. L. N. Berti-Mattera, J. Lowery, S. F. Day, R. G. Peterson, and J. Eichberg, “Alteration of phosphoinositide metabolism, protein phosphorylation, and carbohydrate levels in sciatic nerve from Wistar fatty diabetic rats,” Diabetes, vol. 38, no. 3, pp. 373–378, 1989. View at Scopus
  45. K. Kawano, T. Hirashima, S. Mori, Y. Saitoh, M. Kurosumi, and T. Natori, “Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka Long-Evans Tokushima Fatty (OLETF) strain,” Diabetes, vol. 41, no. 11, pp. 1422–1428, 1992. View at Scopus
  46. K. Kawano, T. Hirashima, S. Mori, and T. Natori, “OLETF (Otsuka Long-Evans Tokushima fatty) rat: a new NIDDM rat strain,” Diabetes Research and Clinical Practice, vol. 24, pp. S317–S320, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Jia, M. Taguchi, and M. Otsuki, “Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats,” Metabolism, vol. 54, no. 5, pp. 619–627, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D. B. West, C. N. Boozer, D. L. Moody, and R. L. Atkinson, “Dietary obesity in nine inbred mouse strains,” American Journal of Physiology, vol. 262, no. 6, pp. R1025–R1032, 1992. View at Scopus
  49. S. Collins, T. L. Martin, R. S. Surwit, and J. Robidoux, “Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics,” Physiology and Behavior, vol. 81, no. 2, pp. 243–248, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. K. Srinivasan and P. Ramarao, “Animal models in type 2 diabetes research: an overview,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 451–472, 2007. View at Scopus
  51. M. Watanabe, S. M. Houten, and S. M. Houten, “Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation,” Nature, vol. 439, no. 7075, pp. 484–489, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. C. Thomas, A. Gioiello, and A. Gioiello, “TGR5-mediated bile acid sensing controls glucose homeostasis,” Cell Metabolism, vol. 10, no. 3, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. De Santis, A. F. Attili, and A. F. Attili, “Gallstones and diabetes: a case-control study in a free-living population sample,” Hepatology, vol. 25, no. 4, pp. 787–790, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. Y. Zhang, K. Guo, R. E. LeBlanc, D. Loh, G. J. Schwartz, and Y. H. Yu, “Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms,” Diabetes, vol. 56, no. 6, pp. 1647–1654, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Y. Noguchi, N. Nishikata, and N. Nishikata, “Ketogenic essential amino acids modulate lipid synthetic pathways and prevent hepatic steatosis in mice,” PLoS One, vol. 5, no. 8, Article ID e12057, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. S. B. Solerte, C. Gazzaruso, and C. Gazzaruso, “Metabolic effects of orally administered amino acid mixture in elderly subjects with poorly controlled type 2 diabetes mellitus,” American Journal of Cardiology, vol. 93, no. 8, pp. 23A–29A, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. E. Eizirik, W. J. Murphy, and S. J. O'Brien, “Molecular dating and biogeography of the early placental mammal radiation,” Journal of Heredity, vol. 92, no. 2, pp. 212–219, 2001. View at Scopus
  58. S. L. Page and M. Goodman, “Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade,” Molecular Phylogenetics and Evolution, vol. 18, no. 1, pp. 14–25, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. B. C. Hansen and N. L. Bodkin, “Heterogeneity of insulin responses: phases leading to type 2 (non-insulin-dependent) diabetes mellitus in the rhesus monkey,” Diabetologia, vol. 29, no. 10, pp. 713–719, 1986. View at Scopus
  60. N. L. Bodkin, J. S. Hannah, H. K. Ortmeyer, and B. C. Hansen, “Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance and hypertriglyceridemia?” International Journal of Obesity, vol. 17, no. 1, pp. 53–61, 1993.
  61. N. L. Bodkin, H. K. Ortmeyer, and B. C. Hansen, “Diversity of insulin resistance in monkeys with normal glucose tolerance,” Obesity Research, vol. 1, no. 5, pp. 364–370, 1993. View at Scopus
  62. J. W. Kemnitz, “Obesity in macaques: spontaneous and induced,” Advances in Veterinary Science and Comparative Medicine, vol. 28, pp. 81–114, 1984. View at Scopus
  63. B. C. Hansen and N. L. Bodkin, “Primary prevention of diabetes mellitus by prevention of obesity in monkeys,” Diabetes, vol. 42, no. 12, pp. 1809–1814, 1993. View at Scopus
  64. B. C. Hansen, H. K. Ortmeyer, and N. L. Bodkin, “Prevention of obesity in middle-aged monkeys: food intake during body weight clamp,” Obesity Research, vol. 3, supplement 2, pp. 199s–204s, 1995. View at Scopus
  65. J. Altmann, D. Schoeller, S. A. Altmann, P. Muruthi, and R. M. Sapolsky, “Body size and fatness of free-living baboons reflect food availability and activity levels,” American Journal of Primatology, vol. 30, pp. 149–161, 1993.
  66. W. A. Banks, J. Altmann, R. M. Sapolsky, J. E. Phillips-Conroy, and J. E. Morley, “Serum leptin levels as a marker for a syndrome X-like condition in wild baboons,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 3, pp. 1234–1240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. W. A. Banks, J. E. Phillips-Conroy, C. J. Jolly, and J. E. Morley, “Serum leptin levels in wild and captive populations of baboons (papio): implications for the ancestral role of leptin,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4315–4320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. S. M. Schwartz, J. W. Kemnitz, and C. F. Howard Jr., “Obesity in free-ranging rhesus macaques,” International Journal of Obesity, vol. 17, no. 1, pp. 1–9, 1993.
  69. T. Takahashi, A. Higashino, and A. Higashino, “Characterization of obesity in Japanese monkeys (Macaca fuscata) in a pedigreed colony,” Journal of Medical Primatology, vol. 35, no. 1, pp. 30–37, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. N. Matsuoka, Y. Ogawa, and Y. Ogawa, “Human leptin receptor gene in obese Japanese subjects: evidence against either obesity-causing mutations or association of sequence variants with obesity,” Diabetologia, vol. 40, no. 10, pp. 1204–1210, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. K. Clément, C. Vaisse, and C. Vaisse, “A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction,” Nature, vol. 392, no. 6674, pp. 398–401, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. V. Rolland, “Leptin receptor gene in a large cohort of massively obese subjects: no indication of the fa/fa rat mutation. Detection of an intronic variant with no association with obesity,” Obesity Research, vol. 6, no. 2, pp. 122–127, 1998. View at Scopus
  73. R. S. Surwit, M. F. Seldin, C. M. Kuhn, C. Cochrane, and M. N. Feinglos, “Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice,” Diabetes, vol. 40, no. 1, pp. 82–87, 1991. View at Scopus
  74. J. Speakman, C. Hambly, S. Mitchell, and E. Król, “Animal models of obesity,” Obesity Reviews, vol. 8, no. 1, pp. 55–61, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. M. Clee and A. D. Attie, “The genetic landscape of type 2 diabetes in mice,” Endocrine Reviews, vol. 28, no. 1, pp. 48–83, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  77. E. E. Calle, C. Rodriguez, and C. Rodriguez, “The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics,” Cancer, vol. 94, no. 9, pp. 2490–2501, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. E. E. Calle, C. Rodriguez, and C. Rodriguez, “The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics,” Cancer, vol. 94, no. 9, pp. 2490–2501, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. E. Calle, M. J. Thun, J. M. Petrelli, C. Rodriguez, and C. W. Heath Jr., “Body-mass index and mortality in a prospective cohort of U.S. adults,” The New England Journal of Medicine, vol. 341, no. 15, pp. 1097–1105, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. E. J. Park, J. H. Lee, and J. H. Lee, “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2, pp. 197–208, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. J. Shaw, K. A. Lamia, and K. A. Lamia, “Medicine: the kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin,” Science, vol. 310, no. 5754, pp. 1642–1646, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. R. J. O. Dowling, M. Zakikhani, I. G. Fantus, M. Pollak, and N. Sonenberg, “Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells,” Cancer Research, vol. 67, no. 22, pp. 10804–10812, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. D. B. Shackelford and R. J. Shaw, “The LKB1-AMPK pathway: metabolism and growth control in tumour suppression,” Nature Reviews Cancer, vol. 9, no. 8, pp. 563–575, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. A. Kalender, A. Selvaraj, and A. Selvaraj, “Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner,” Cell Metabolism, vol. 11, no. 5, pp. 390–401, 2010. View at Publisher · View at Google Scholar · View at PubMed
  86. R. Saeedi, H. L. Parsons, and H. L. Parsons, “Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms,” American Journal of Physiology, vol. 294, no. 6, pp. H2497–H2506, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. J. M. Dhahbi, P. L. Mote, G. M. Fahy, and S. R. Spindler, “Identification of potential caloric restriction mimetics by microarray profiling,” Physiological Genomics, vol. 23, no. 3, pp. 343–350, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. B. J. Merry, “Molecular mechanisms linking calorie restriction and longevity,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 11, pp. 1340–1354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. J. M. Dhahbi, H. J. Kim, P. L. Mote, R. J. Beaver, and S. R. Spindler, “Temporal linkage between the phenotypic and genomic responses to caloric restriction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5524–5529, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. C. Algire, L. Amrein, M. Zakikhani, L. Panasci, and M. Pollak, “Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase,” Endocrine-Related Cancer, vol. 17, no. 2, pp. 351–360, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. K. N. Phoenix, F. Vumbaca, M. M. Fox, R. Evans, and K. P. Claffey, “Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy,” Breast Cancer Research and Treatment, vol. 123, no. 2, pp. 333–344, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. A. M. Ribeiro, S. Andrade, and S. Andrade, “Prostate cancer cell proliferation and angiogenesis in different obese mice models,” International Journal of Experimental Pathology, vol. 91, no. 4, pp. 374–386, 2010. View at Publisher · View at Google Scholar · View at PubMed
  93. R. R. Gonzalez, S. Cherfils, and S. Cherfils, “Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2),” Journal of Biological Chemistry, vol. 281, no. 36, pp. 26320–26328, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. R. Rene Gonzalez, A. Watters, Y. Xu, U. P. Singh, D. R. Mann, B. R. Rueda, and M. L. Penichet, “Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer,” Breast Cancer Research, vol. 11, no. 3, p. R36, 2009. View at Scopus
  95. D. Sharma, N. K. Saxena, P. M. Vertino, and F. A. Anania, “Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 629–640, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. M. Bartucci, S. Svensson, and S. Svensson, “Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-fluorouracil in colorectal tumor stem cells,” Endocrine-Related Cancer, vol. 17, no. 3, pp. 823–833, 2010. View at Publisher · View at Google Scholar · View at PubMed
  97. J. C. Hendricks, L. R. Kline, R. J. Kovalski, J. A. O'Brien, A. R. Morrison, and A. I. Pack, “The English bulldog: a natural model of sleep-disordered breathing,” Journal of Applied Physiology, vol. 63, no. 4, pp. 1344–1350, 1987. View at Scopus
  98. R. P. Lonergan, J. C. Ware, R. L. Atkinson, W. C. Winter, and P. M. Suratt, “Sleep apnea in obese miniature pigs,” Journal of Applied Physiology, vol. 84, no. 2, pp. 531–536, 1998. View at Scopus
  99. S. A. Tuck, J. C. Dort, M. E. Olson, and J. E. Remmers, “Monitoring respiratory function and sleep in the obese Vietnamese pot-bellied pig,” Journal of Applied Physiology, vol. 87, no. 1, pp. 444–451, 1999. View at Scopus
  100. E. van Lunteren, “Effects of genetic obesity on rat upper airway muscle and diaphragm contractile properties,” European Respiratory Journal, vol. 9, no. 10, pp. 2139–2144, 1996. View at Scopus
  101. M. Radulovacki, S. Trbovic, and D. W. Carley, “Hypotension reduces sleep apneas in Zucker lean and Zucker obese rats,” Sleep, vol. 19, no. 10, pp. 767–773, 1996. View at Scopus
  102. D. Megirian, J. Dmochowski, and G. A. Farkas, “Mechanism controlling sleep organization of the obese Zucker rats,” Journal of Applied Physiology, vol. 84, no. 1, pp. 253–256, 1998. View at Scopus
  103. M. J. Brennick, S. Pickup, J. R. Cater, and S. T. Kuna, “Phasic respiratory pharyngeal mechanics by magnetic resonance imaging in lean and obese Zucker rats,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 9, pp. 1031–1037, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. H. Nakano, U. J. Magalang, S. D. Lee, J. A. Krasney, and G. A. Farkas, “Serotonergic modulation of ventilation and upper airway stability in obese Zucker rats,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 5, pp. 1191–1197, 2001. View at Scopus
  105. L. L. Peters, R. F. Robledo, C. J. Bult, G. A. Churchill, B. J. Paigen, and K. L. Svenson, “The mouse as a model for human biology: a resource guide for complex trait analysis,” Nature Reviews Genetics, vol. 8, no. 1, pp. 58–69, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. Y. Tagaito, V. Y. Polotsky, and V. Y. Polotsky, “A model of sleep-disordered breathing in the C57BL/6J mouse,” Journal of Applied Physiology, vol. 91, no. 6, pp. 2758–2766, 2001. View at Scopus
  107. M. J. Brennick, A. I. Pack, K. Ko, E. Kim, S. Pickup, G. Maislin, and R. J. Schwab, “Altered upper airway and soft tissue structures in the New Zealand obese mouse,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 2, pp. 158–169, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. B. K. Smith, D. B. West, and D. A. York, “Carbohydrate versus fat intake: differing patterns of macronutrient selection in two inbred mouse strains,” American Journal of Physiology, vol. 272, no. 1, pp. R357–R362, 1997. View at Scopus
  109. B. K. Smith, L. A. Kelly, R. Piña, D. A. York, and G. A. Bray, “Preferential fat intake increases adiposity but not body weight in Sprague-Dawley rats,” Appetite, vol. 31, no. 2, pp. 127–139, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. B. K. Smith, P. K. Andrews, and D. B. West, “Macronutrient diet selection in thirteen mouse strains,” American Journal of Physiology, vol. 278, no. 4, pp. R797–R805, 2000. View at Scopus
  111. M. W. Schwartz, S. C. Woods, D. Porte, R. J. Seeley, and D. G. Baskin, “Central nervous system control of food intake,” Nature, vol. 404, no. 6778, pp. 661–671, 2000. View at Scopus
  112. J. N. Crawley, “The role of galanin in feeding behavior,” Neuropeptides, vol. 33, no. 5, pp. 369–375, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. M. Odorizzi, B. Fernette, E. Angel, C. Burlet, P. Tankosic, and A. Burlet, “Galanin receptor antagonists decrease fat preference in Brattleboro rat,” Neuropharmacology, vol. 42, no. 1, pp. 134–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. B. K. Smith, D. A. York, and G. A. Bray, “Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity,” Peptides, vol. 15, no. 7, pp. 1267–1272, 1994. View at Publisher · View at Google Scholar · View at Scopus
  115. B. K. Smith, H. R. Berthoud, D. A. York, and G. A. Bray, “Differential effects of baseline macronutrient preferences on macronutrient selection after galanin, NPY, and an overnight fast,” Peptides, vol. 18, no. 2, pp. 207–211, 1997. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Jhanwar-Uniyal, B. Beck, Y. S. Jhanwar, C. Burlet, and S. F. Leibowitz, “Neuropeptide Y projection from arcuate nucleus to parvocellular division of paraventricular nucleus: specificfd relation to the ingestion of carbohydrate,” Brain Research, vol. 631, no. 1, pp. 97–106, 1993. View at Publisher · View at Google Scholar · View at Scopus
  117. E. Carmina and R. A. Lobo, “Polycystic ovary syndrome (PCOS): arguably the most common endocrinopathy is associated with significant morbidity in women,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 6, pp. 1897–1899, 1999. View at Scopus
  118. D. Glintborg and M. Andersen, “An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome,” Gynecological Endocrinology, vol. 26, no. 4, pp. 281–296, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. M. Rebuffe-Scrive, R. Surwit, M. Feinglos, C. Kuhn, and J. Rodin, “Regional fat distribution and metabolism in a new mouse model (C57BL/6J) of non-insulin-dependent diabetes mellitus,” Metabolism, vol. 42, no. 11, pp. 1405–1409, 1993. View at Publisher · View at Google Scholar · View at Scopus
  120. D. L. Coleman and K. P. Hummel, “The influence of genetic background on the expression of the obese (Ob) gene in the mouse,” Diabetologia, vol. 9, no. 4, pp. 287–293, 1973. View at Scopus
  121. A. A. Toye, J. D. Lippiat, and J. D. Lippiat, “A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice,” Diabetologia, vol. 48, no. 4, pp. 675–686, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. D. L. Coleman, “The influence of genetic background on the expression of mutations at the diabetes (db) locus in the mouse VI: hepatic malic enzyme activity is associated with diabetes severity,” Metabolism, vol. 41, no. 10, pp. 1134–1136, 1992. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Almind and C. R. Kahn, “Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice,” Diabetes, vol. 53, no. 12, pp. 3274–3285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. E. H. Leiter, D. L. Coleman, A. B. Eisenstein, and I. Strack, “A new mutation (db3J) at the diabetes locus in strain 129/J mice. I. Physiological and histological characterization,” Diabetologia, vol. 19, pp. 58–65, 1980.
  125. J. B. Flowers, A. T. Oler, and A. T. Oler, “Abdominal obesity in BTBR male mice is associated with peripheral but not hepatic insulin resistance,” American Journal of Physiology, vol. 292, no. 3, pp. E936–E945, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. S. M. Clee, S. T. Nadler, and A. D. Attie, “Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes,” American Journal of Therapeutics, vol. 12, no. 6, pp. 491–498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. R. S. Surwit, C. M. Kuhn, C. Cochrane, J. A. McCubbin, and M. N. Feinglos, “Diet-induced type II diabetes in C57BL/6J mice,” Diabetes, vol. 37, no. 9, pp. 1163–1167, 1988. View at Scopus
  128. R. S. Surwit, M. N. Feinglos, and M. N. Feinglos, “Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice,” Metabolism, vol. 44, no. 5, pp. 645–651, 1995. View at Scopus
  129. J. Qiu, S. Ogus, K. Mounzih, A. Ewart-Toland, and F. F. Chehab, “Leptin-deficient mice backcrossed to the BALB/cJ genetic background have reduced adiposity, enhanced fertility, normal body temperature, and severe diabetes,” Endocrinology, vol. 142, no. 8, pp. 3421–3425, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. B. York, K. Lei, and D. B. West, “Sensitivity to dietary obesity linked to a locus on chromosome 15 in a CAST/Ei × C57BL/6J F intercross,” Mammalian Genome, vol. 7, no. 9, pp. 677–681, 1996. View at Scopus
  131. S. Chua, S. M. Liu, Q. Li, L. Yang, V. Thassanapaff, and P. Fisher, “Differential beta cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB-Lepr) and obese (DBA-Lep) mice,” Diabetologia, vol. 45, no. 7, pp. 976–990, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. J. H. Kim, A. Sen, and A. Sen, “Genetic analysis of a new mouse model for non-insulin-dependent diabetes,” Genomics, vol. 74, no. 3, pp. 273–286, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. H. Ueda, H. Ikegami, and H. Ikegami, “The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity,” Diabetologia, vol. 38, no. 5, pp. 503–508, 1995. View at Publisher · View at Google Scholar · View at Scopus
  134. C. E. Mathews and E. H. Leiter, “Resistance of ALR/Lt islets to free radical-mediated diabetogenic stress is inherited as a dominant trait,” Diabetes, vol. 48, no. 11, pp. 2189–2196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Sekiguchi, K. Ishibashi, Y. Kawamoto, and T. Ino, “Diabetic peculiarity of the ALS-Ay and ALR-Ay strains,” Jikken Dobutsu, vol. 40, no. 3, pp. 323–329, 1991. View at Scopus
  136. T. H. Ehrich, J. P. Kenney, T. T. Vaughn, L. S. Pletscher, and J. M. Cheverud, “Diet, obesity, and hyperglycemia in LG/J and SM/J mice,” Obesity Research, vol. 11, no. 11, pp. 1400–1410, 2003. View at Scopus
  137. M. Yoshioka, T. Kayo, T. Ikeda, and A. Koizumi, “A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice,” Diabetes, vol. 46, no. 5, pp. 887–894, 1997. View at Scopus