About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 286947, 12 pages
http://dx.doi.org/10.1155/2011/286947
Review Article

Placental Leucine Aminopeptidase- and Aminopeptidase A- Deficient Mice Offer Insight concerning the Mechanisms Underlying Preterm Labor and Preeclampsia

1Daiya Building Lady's Clinic, Meieki 3-15-1, Nakamura, Nagoya 450-0002, Japan
2Department of Psychology, Veterinary and Comparative Anatomy, Pharmacology and Physiology, and Programs in Neuroscience and Biotechnology, Washington State University, Pullman, WA 99164-4820, USA
3Department of Obstetrics-Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan

Received 6 August 2010; Accepted 8 October 2010

Academic Editor: Monica Fedele

Copyright © 2011 Shigehiko Mizutani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Broughton-Pipkin and E. M. Symonds, “Factors affecting angiotensin II concentrations in the human infant at birth,” Clinical Science and Molecular Medicine, vol. 52, no. 5, pp. 449–456, 1977. View at Scopus
  2. J. C. P. Kingdom, J. McQueen, J. M. C. Connell, and M. J. Whittle, “Fetal angiotensin II levels and vascular (type I) angiotensin receptors in pregnancies complicated by intrauterine growth retardation,” British Journal of Obstetrics and Gynaecology, vol. 100, no. 5, pp. 476–482, 1993. View at Scopus
  3. H. P. Oosterbaan and D. F. Swaab, “Amniotic oxytocin and vasopressin in relation to human fetal development and labour,” Early Human Development, vol. 19, no. 4, pp. 253–262, 1989. View at Scopus
  4. T. Chard, C. N. Hudson, C. R. W. Edwards, and N. R. H. Boyd, “Release of oxytocin and vasopressin by the human foetus during labour,” Nature, vol. 234, no. 5328, pp. 352–354, 1971. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Sakura, T. Y. Lin, M. Doi, S. Mizutani, and Y. Kawashima, “Purification and properties of oxytocinase, a metalloenzyme,” Biochemical International, vol. 2, pp. 173–179, 1981. View at Scopus
  6. S. Mizutani, S. Sumi, K. Oka, R. Yamada, et al., “In vitro degradation of oxytocin by pregnancy serum, placental subcellular fractions and purified placental aminopeptidases,” Experimental and Clinical Endocrinology, vol. 86, no. 3, pp. 310–316, 1985. View at Scopus
  7. M. Tsujimoto, S. Mizutani, H. Adachi, M. Kimura, H. Nakazato, and Y. Tomoda, “Identification of human placental leucine aminopeptidase as oxytocinase,” Archives of Biochemistry and Biophysics, vol. 292, no. 2, pp. 388–392, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mizutani, K. Okano, E. Hasegawa, et al., “Aminopeptidase A in human placenta,” Biochimical Biophsics Acta, vol. 678, pp. 168–170, 1981.
  9. S. Mizutani, H. Akiyama, and O. Kurauchi, “In vitro degradation of angiotensin II (A-II) by human placental subcellular fractions, pregnancy sera and purified placental aminopeptidases,” Acta Endocrinologica, vol. 110, no. 1, pp. 135–139, 1985.
  10. S. Mizutani, K. Naruse, A. Hattori, M. Tsujimoto, and H. Kobayashi, “Physiological and pathophysiological roles of placental aminopeptidase in maternal sera: possible relation to preeclampsia and preterm delivery,” Expert Opinion on Medical Diagnostics, vol. 3, no. 5, pp. 479–491, 2009. View at Publisher · View at Google Scholar
  11. C. W. Redman and I. L. Sargent, “Latest advances in understanding preeclampsia,” Science, vol. 308, no. 5728, pp. 1592–1594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Roberts, “Pregnancy-related hypertension,” in Maternal-Fetal Medicine, R. K. Creasy and R. Resnik, Eds., pp. 859–899, Saunders, Philadelphia, Pa, USA, 5th edition, 2004.
  13. T. P. Dezen and E. Lynch, “Title of subordinate document,” in For Preterm Birth Rate, March of Dimes Foundation, November 2009, http//www.marchofdimes.com/ title of subordinate document.
  14. S. E. Fletcher, D. A. Fyfe, C. L. Case, H. B. Wiles, J. K. Upshur, and R. B. Newman, “Myocardial necrosis in a newborn after long-term maternal subcutaneous terbutaline infusion for suppression of preterm labor,” American Journal of Obstetrics and Gynecology, vol. 165, no. 5 I, pp. 1401–1404, 1991. View at Scopus
  15. T. Thorkelsson and J. L. Loughead, “Long-term subcutaneous terbutaline tocolysis: report of possible neonatal toxicity,” Journal of Perinatology, vol. 11, no. 3, pp. 235–238, 1991. View at Scopus
  16. P. G. Pryde and R. Mittendorf, “Contemporary usage of obstetric magnesium sulfate: indication, contraindication, and relevance of dose,” Obstetrics and Gynecology, vol. 114, no. 3, pp. 669–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ishii, A. Hattori, Y. Numaguchi et al., “The effect of recombinant aminopeptidase A (APA) on hypertension in pregnant spontaneously hypertensive rats (SHRs),” Early Human Development, vol. 85, no. 9, pp. 589–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. P. Taliercio, J. B. Seward, and D. J. Driscoll, “Idiopathic dilated cardiomyopathy in the young: clinical profile and natural history,” Journal of the American College of Cardiology, vol. 6, no. 5, pp. 1126–1131, 1985.
  19. S. Mizutani and Y. Tomoda, “Effects of placental proteases on maternal and fetal blood pressure in normal pregnancy and preeclampsia,” American Journal of Hypertension, vol. 9, no. 6, pp. 591–597, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Taira, S. Mizutani, O. Narita, and Y. Tomoda, “Angiotensin I-converting enzyme in human placenta,” Placenta, vol. 6, no. 6, pp. 543–549, 1985. View at Scopus
  21. H. Yagami, O. Kurauchi, Y. Murata, T. Okamoto, S. Mizutani, and Y. Tomoda, “Expression of angiotensin-converting enzyme in human placenta and its physiologic role in the fetal circulation,” Obstetrics and Gynecology, vol. 84, no. 3, pp. 453–457, 1994. View at Scopus
  22. W. Raasch, O. Jöhren, S. Schwartz, A. Gieselberg, and P. Dominiak, “Combined blockade of AT1-receptors and ACE synergistically potentiates antihypertensive effects in SHR,” Journal of Hypertension, vol. 22, no. 3, pp. 611–618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Boschmann, U. Kreuzberg, S. Engeli et al., “The effect of oral glucose loads on tissue metabolism during angiotensin II receptor and beta-receptor blockade in obese hypertensive subjects,” Hormone and Metabolic Research, vol. 38, no. 5, pp. 323–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Mizutani, M. Ishii, A. Hattori et al., “New insights into the importance of aminopeptidase A in hypertension,” Heart Failure Reviews, vol. 13, no. 3, pp. 273–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Wolf, S. Mentzel, and K. J. M. Assmann, “Aminopeptidase A: a key enzyme in the intrarenal degradation of angiotensin ii,” Experimental Nephrology, vol. 5, no. 5, pp. 364–369, 1997. View at Scopus
  26. J. W. Wright, B. J. Yamamoto, and J. W. Harding, “Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets,” Progress in Neurobiology, vol. 84, no. 2, pp. 157–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. K. Creasy, R. Resnik, and J. D. Iams, Eds., Maternal-Fetal Medicine: Principles and Practice, Elsevier, New York, NY, USA, 5th edition, 2004.
  28. F. Arias and P. Tomich, “Etiology and outcome of low birth weight and preterm infants,” Obstetrics and Gynecology, vol. 60, no. 3, pp. 277–281, 1982. View at Scopus
  29. G. C. Liggins, P. C. Kennedy, and L. W. Holm, “Failure of initiation of parturition after electrocoagulation of the pituitary of the fetal lamb,” American Journal of Obstetrics and Gynecology, vol. 98, no. 8, pp. 1080–1086, 1967. View at Scopus
  30. G. C. Liggins, S. A. Grieves, J. Z. Kendall, and B. S. Knox, “The physiological roles of progesterone, oestradiol-17β and prostaglandin F2α in the control of ovine parturition,” Journal of Reproduction and Fertility, vol. 16, supplement, pp. 16–10, 1972. View at Scopus
  31. A. M. Blanks and S. Thornton, “The role of oxytocin in parturition,” British Journal of Obstetrics and Gynaecology, vol. 110, supplement 20, pp. 46–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A.-R. F. Fuchs Fuchs, P. Husslein, and M. S. Soloff, “Oxytocin receptors in the human uterus during pregnancy and parturition,” American Journal of Obstetrics and Gynecology, vol. 150, no. 6, pp. 734–741, 1984. View at Scopus
  33. S. Mizutani and Y. Tomoda, “Oxytocinase: placental cystine aminopeptidase or placental leucine aminopeptidase (P-LAP),” Seminars in Reproductive Endocrinology, vol. 10, no. 2, pp. 146–153, 1992. View at Scopus
  34. M. Naruki, S. Mizutani, K. Goto et al., “Oxytocin is hydrolyzed by an enzyme in human placenta that is identical to the oxytocinase of pregnancy serum,” Peptides, vol. 17, no. 2, pp. 257–261, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Mizutani, M. Yoshino, and M. Oya, “Placental and non placental leucine aminopeptidases during normal pregnancy,” Clinical Biochemistry, vol. 9, no. 1, pp. 16–18, 1976. View at Scopus
  36. N. Yamahara, S. Nomura, T. Suzuki et al., “Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy,” Life Sciences, vol. 66, no. 15, pp. 1401–1410, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Klimek, L. Wicherek, T. J. Popiela, K. Skotniczny, and B. Tomaszewska, “Changes of maternal ACTH and oxytocinase plasma concentrations during the first trimester of spontaneous abortion,” Neuroendocrinology Letters, vol. 26, no. 4, pp. 342–346, 2005. View at Scopus
  38. L. Wicherek, M. Dutsch-Wicherek, P. Mak, and M. Klimek, “The role of RCAS1 and oxytocinase in immune tolerance during pregnancy,” Fetal Diagnosis and Therapy, vol. 20, no. 5, pp. 420–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Nagasaka, S. Nomura, M. Okamura et al., “Immunohistochemical localization of placental leucine aminopeptidase/oxytocinase in normal human placental, fetal and adult tissues,” Reproduction, Fertility and Development, vol. 9, no. 8, pp. 747–753, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. O. N. Richter, C. Dorn, P. Van De Vondel, U. Ulrich, and J. Schmolling, “Tocolysis with atosiban: experience in the management of premature labor before 24 weeks of pregnancy,” Archives of Gynecology and Obstetrics, vol. 272, no. 1, pp. 26–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Engstrøm, P. Bratholm, H. Vilhardt, and N. J. Christensen, “Effect of oxytocin receptor and β2-adrenoceptor blockade on myometrial oxytocin receptors in parturient rats,” Biology of Reproduction, vol. 60, no. 2, pp. 322–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Mizutani, H. Akiyama, O. Kurauchi, H. Taira, O. Narita, and Y. Tomoda, “Plasma angiotensin II and serum placental leucine aminopeptidase (P-LAP) in pre-eclampsia,” Archives of Gynecology, vol. 236, no. 3, pp. 165–172, 1985.
  43. S. A. Mohamed, S. Mizutani, H. T. Salem et al., “Changes of placental proteases, which degrade vasoactive peptides, in maternal sera at the onset of preeclampsia,” Medical Science Research, vol. 23, no. 2, pp. 123–126, 1995. View at Scopus
  44. S. Mizutani, R. Yamada, O. Kurauchi, Y. Ito, O. Narita, and Y. Tomoda, “Serum aminopeptidase A (AAP) in normal pregnancy and pregnancy complicated by pre-eclampsia,” Archives of Gynecology, vol. 240, no. 1, pp. 27–31, 1987. View at Scopus
  45. H. Kobori, A. Nishiyama, Y. Abe, and L. G. Navar, “Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet,” Hypertension, vol. 41, no. 3 I, pp. 592–597, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Nomura, S. Nomura, T. Mitsui et al., “Possible involvement of aminopeptidase a in hypertension and renal damage in Dahl salt-sensitive rats,” American Journal of Hypertension, vol. 18, no. 4, pp. 538–543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Kozaki, A. Itakura, M. Okamura, Y. Ohno, K. Wakai, and S. Mizutani, “Maternal serum placental leucine aminopeptidase (P-LAP)/oxytocinase and preterm delivery,” International Journal of Gynecology and Obstetrics, vol. 73, no. 3, pp. 207–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Mizutani, H. Hayakawa, and H. Akiyama, “Simultaneous determinations of plasma oxytocin and serum placental leucine aminopeptidase (P-LAP) during late pregnancy,” Clinical Biochemistry, vol. 15, no. 3, pp. 141–145, 1982. View at Scopus
  49. N. F. Gant, G. L. Daley, S. Chand, P. J. Whalley, and P. C. MacDonald, “A study of angiotensin II pressor response throughout primigravid pregnancy,” Journal of Clinical Investigation, vol. 52, no. 11, pp. 2682–2689, 1973. View at Scopus
  50. T. Mitsui, S. Nomura, M. Okada et al., “Hypertension and angiotensin II hypersensitivity in aminopeptidase A-deficient mice,” Molecular Medicine, vol. 9, no. 1-2, pp. 57–62, 2003. View at Scopus
  51. J. T. Gafford, R. A. Skidgel, E. G. Erdös, and L. B. Hersh, “Human kidney "enkephalinase", a neutral metalloendopeptidase that cleaves active peptides,” Biochemistry, vol. 22, no. 13, pp. 3265–3271, 1983. View at Scopus
  52. S. Mizutani, S. Sumi, O. Suzuki, O. Narita, and Y. Tomoda, “Postproline endopeptidase in human placenta,” Biochimica et Biophysica Acta, vol. 786, pp. 113–117, 1984.
  53. S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, “A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase,” Journal of Biological Chemistry, vol. 275, no. 43, pp. 33238–33243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. G. A. Gross, T. Imamura, C. Luedke et al., “Opposing actions of prostaglandins and oxytocin determine the onset of murine labor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11875–11879, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Nishimori, L. J. Young, Q. Guo, Z. Wang, T. R. Insel, and M. M. Matzuk, “Oxytocin is required for nursing but is not essential for parturition or reproductive behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11699–11704, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Rogi, M. Tsujimoto, H. Nakazato, S. Mizutani, and Y. Tomoda, “Human placental leucine aminopeptidase/oxytocinase: a new member of type II membrane-spanning zinc metallopeptidase family,” Journal of Biological Chemistry, vol. 271, no. 1, pp. 56–61, 1996. View at Scopus
  57. S. R. Keller, H. M. Scott, C. C. Mastick, R. Aebersold, and G. E. Lienhard, “Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles,” Journal of Biological Chemistry, vol. 270, no. 40, pp. 23612–23618, 1995. View at Publisher · View at Google Scholar · View at Scopus
  58. S. R. Keller, A. C. Davis, and K. B. Clairmont, “Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis,” Journal of Biological Chemistry, vol. 277, no. 20, pp. 17677–17686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. M. G. Wallis, M. F. Lankford, and S. R. Keller, “Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP,” American Journal of Physiology, vol. 293, no. 4, pp. E1092–E1102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Ishii, A. Hattori, Y. Numaguchi et al., “The effect of recombinant aminopeptidase A on hypertension in spontaneously hypertensive rats: its effect in comparison with candesartan,” Hormone and Metabolic Research, vol. 40, no. 12, pp. 887–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Mizutani, M. Furuhashi, H. Imaizumi, Y. Ito, O. Kurauchi, and Y. Tomoda, “Effects of human placental aminopeptidases in spontaneously hypertensive rats,” Medical Science Research, vol. 15, pp. 1203–1204, 1987.
  62. L. Song and D. P. Healy, “Kidney aminopeptidase A and hypertension, part II: effects of angiotensin II,” Hypertension, vol. 33, no. 2, pp. 746–752, 1999. View at Scopus
  63. Y. Hariyama, A. Itakura, M. Okamura et al., “Placental aminopeptidase A as a possible barrier of angiotensin II between mother and fetus,” Placenta, vol. 21, no. 7, pp. 621–627, 2002.
  64. K. Ino, C. Uehara, F. Kikkawa et al., “Enhancement of aminopeptidase A expression during Angiotensin II-induced choriocarcinoma cell proliferation through AT1 receptor involving protein kinase C- and mitogen-activated protein kinase-dependent signaling pathway,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 8, pp. 3973–3982, 2003. View at Publisher · View at Google Scholar
  65. G. Vazeux, X. Iturrioz, P. Corvol, and C. Llorens-Cortes, “A glutamate residue contributes to the exopeptidase specificity in aminopeptidase A,” Biochemical Journal, vol. 334, no. 2, pp. 407–413, 1998. View at Scopus
  66. K. Okamoto and K. Aoki, “Development of a strain of spontaneously hypertensive rats,” Japanese Circulation Journal, vol. 27, no. 6, pp. 282–293, 1963. View at Scopus
  67. Y. Nakashima, Y. Ohno, A. Itakura et al., “Possible involvement of aminopeptidase A in hypertension in spontaneously hypertensive rats (SHRs) and change of refractoriness in response to angiotensin II in pregnant SHRs,” Journal of Hypertension, vol. 20, no. 11, pp. 2233–2238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. A. G. Kieback, H. Iven, K. Stolzenburg, and G. Baumann, “Saterinone, dobutamine, and sodium nitroprusside: comparison of cardiovascular profiles in patients with congestive heart failure,” Journal of Cardiovascular Pharmacology, vol. 32, no. 4, pp. 629–636, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. N. D. Binder and J. J. Faber, “Effects of captopril on blood pressure, placental blood flow and uterine oxygen consumption in pregnant rabbits,” Journal of Pharmacology and Experimental Therapeutics, vol. 260, no. 1, pp. 294–299, 1992. View at Scopus
  70. Y. Murata, Y. Ohno, A. Itakura et al., “Bestatin results in pathophysiological changes similar to preeclampsia in rats via induction of placental apoptosis,” Hormone and Metabolic Research, vol. 35, no. 6, pp. 343–348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. R. L. Davisson, D. S. Hoffmann, G. M. Butz et al., “Discovery of a spontaneous genetic mouse model of preeclampsia,” Hypertension, vol. 39, no. 2, pp. 337–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. S. E. Maynard, J.-Y. Min, J. Merchan et al., “Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 649–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Furuhashi, S. Mizutani, O. Kurachi, M. Kasugai, and Y. Tomoda, “Effects of bestatin on intrauterine growth of rat fetuses,” Hormone and Metabolic Research, vol. 21, no. 7, pp. 366–368, 1988. View at Scopus
  74. A. Quan, “Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists,” Early Human Development, vol. 82, no. 1, pp. 23–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. E. Bowen, W. A. Ray, P. G. Arbogast, H. Ding, and W. O. Cooper, “Increasing exposure to angiotensin-converting enzyme inhibitors in pregnancy,” American Journal of Obstetrics and Gynecology, vol. 198, no. 3, pp. e1–e5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Ishii, K. Naruse, A. Hattori et al., “Oxytocin hypersensitivity in pregnant P-LAP deficient mice,” Life Sciences, vol. 84, no. 19-20, pp. 668–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Imamura, C. E. Luedke, S. K. Vogt, and L. J. Muglia, “Oxytocin modulates the onset of murine parturition by competing ovarian and uterine effects,” American Journal of Physiology, vol. 279, no. 3, pp. R1061–R1067, 2000. View at Scopus
  78. T. Engstrøm, P. Bratholm, H. Vilhardt, and N. J. Christensen, “Effect of oxytocin receptor and β2-adrenoceptor blockade on myometrial oxytocin receptors in parturient rats,” Biology of Reproduction, vol. 60, no. 2, pp. 322–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Reversi, V. Rimoldi, T. Marrocco et al., “The oxytocin receptor antagonist atosiban inhibits cell growth via a "biased agonist" mechanism,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 16311–16318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Mizutani, O. Kurauchi, Y. Ito, O. Narita, and Y. Tomoda, “Positive effect of estradiol and progesterone in severe pre-eclampsia,” Experimental and Clinical Endocrinology, vol. 92, no. 2, pp. 161–170, 1988. View at Scopus
  81. G. V. Smith and O. W. Smith, “Estrogen and progestin metabolism in pregnancy,” Journal of Clinical Endocrinology, vol. 1, pp. 477–484, 1941.
  82. Y. Katsumata, S. Nomura, K. Ino et al., “Progesterone stimulates the expression of aminopeptidase A/angiotensinase in human choriocarcinoma cells,” Placenta, vol. 22, no. 10, pp. 831–836, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Matsuura, A. Itakura, Y. Ohno et al., “Effects of estradiol administration on feto-placental growth in rat,” Early Human Development, vol. 77, no. 1-2, pp. 47–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. D. J. P. Barker, “Maternal nutrition, fetal nutrition, and disease in later life,” Nutrition, vol. 13, no. 9, pp. 652–655, 1997. View at Publisher · View at Google Scholar · View at Scopus