About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 396734, 8 pages
http://dx.doi.org/10.1155/2011/396734
Research Article

Long-Term Type 1 Diabetes Enhances In-Stent Restenosis after Aortic Stenting in Diabetes-Prone BB Rats

1Section of Immunology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
2Department of Cardiology, Thorax Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
3Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
4Section of Pharmacology and Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands

Received 13 September 2010; Revised 9 December 2010; Accepted 4 January 2011

Academic Editor: Monica Fedele

Copyright © 2011 Geanina Onuta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Scott, “Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury,” Advanced Drug Delivery Reviews, vol. 58, no. 3, pp. 358–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. C. Lowe, S. N. Oesterle, and L. M. Khachigian, “Coronary in-stent restenosis: current status and future strategies,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 183–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Mitra and D. K. Agrawal, “In stent restenosis: bane of the stent era,” Journal of Clinical Pathology, vol. 59, no. 3, pp. 232–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Garg and P. W. Serruys, “Coronary stents: current status,” Journal of the American College of Cardiology, vol. 56, no. 10, supplement 1, pp. S1–S42, 2010. View at Publisher · View at Google Scholar
  5. A. Abizaid, R. Kornowski, G. S. Mintz et al., “The influence of diabetes mellitus on acute and late clinical outcomes following coronary stent implantation,” Journal of the American College of Cardiology, vol. 32, no. 3, pp. 584–589, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Berry, J. C. Tardif, and M. G. Bourassa, “Coronary heart disease in patients with diabetes—part II: recent advances in coronary revascularization,” Journal of the American College of Cardiology, vol. 49, no. 6, pp. 643–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Loutfi, N. T. Mulvihill, M. Boccalatte, B. Farah, J. Fajadet, and J. Marco, “Impact of restenosis and disease progression on clinical outcome after multivessel stenting in diabetic patients,” Catheterization and Cardiovascular Interventions, vol. 58, no. 4, pp. 451–454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kastrati, A. Schömig, S. Elezi et al., “Predictive factors of restenosis after coronary stent placement,” Journal of the American College of Cardiology, vol. 30, no. 6, pp. 1428–1436, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Elezi, A. Kastrati, J. Pache et al., “Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement,” Journal of the American College of Cardiology, vol. 32, no. 7, pp. 1866–1873, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Seabra-Gomes, “Percutaneous coronary interventions with drug eluting stents for diabetic patients,” Heart, vol. 92, no. 3, pp. 410–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Ellis and C. R. Narins, “Problem of angioplasty in diabetics,” Circulation, vol. 96, no. 6, pp. 1707–1710, 1997. View at Scopus
  12. J. P. Carrozza Jr., R. E. Kuntz, R. F. Fishman, and D. S. Baim, “Restenosis after arterial injury caused by coronary stenting in patients with diabetes mellitus,” Annals of Internal Medicine, vol. 118, no. 5, pp. 344–349, 1993. View at Scopus
  13. S. R. Wilson, B. A. Vakili, W. Sherman, T. A. Sanborn, and D. L. Brown, “Effect of diabetes on long-term mortality following contemporary percutaneous coronary intervention: analysis of 4284 cases,” Diabetes Care, vol. 27, no. 5, pp. 1137–1142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. K. Kuchulakanti, R. Torguson, D. Canos et al., “Impact of treatment of coronary artery disease with sirolimus-eluting stents on outcomes of diabetic and nondiabetic patients,” American Journal of Cardiology, vol. 96, no. 8, pp. 1100–1106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Stettler, S. Allemann, M. Egger, S. Windecker, B. Meier, and P. Diem, “Efficacy of drug eluting stents in patients with and without diabetes mellitus: indirect comparison of controlled trials,” Heart, vol. 92, no. 5, pp. 650–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Scheen and F. Warzée, “Diabetes is still a risk factor for restenosis after drug-eluting stent in coronary arteries,” Diabetes Care, vol. 27, no. 7, pp. 1840–1841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Gilbert, J. Raboud, and B. Zinman, “Meta-analysis of the effect of diabetes on restenosis rates among patients receiving coronary angioplasty stenting,” Diabetes Care, vol. 27, no. 4, pp. 990–994, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Komowski, G. S. Mintz, K. M. Kent et al., “Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia: a serial intravascular ultrasound study,” Circulation, vol. 95, no. 6, pp. 1366–1369, 1997.
  19. R. Takeda, E. Suzuki, H. Satonaka et al., “Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats,” Circulation, vol. 111, no. 11, pp. 1398–1406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Shelton, D. Wang, H. Gupta, J. M. Wyss, S. Oparil, and C. R. White, “The neointimal response ot endovascular injury is increased in obese Zucker rats,” Diabetes, Obesity and Metabolism, vol. 5, no. 6, pp. 415–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. McMahon, H. Zreiqat, and H. C. Lowe, “Carotid artery stenting in the Zucker rat: a novel, potentially ‘diabetes-specific’ model of in-stent restenosis,” Diabetes and Vascular Disease Research, vol. 5, no. 2, pp. 145–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Dickinson, T. Rogers, B. Kasiske et al., “Coronary artery disease in young women and men with long-standing insulin-dependent diabetes,” Angiology, vol. 59, no. 1, pp. 9–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Gonzalez-Navarro, D. J. Burks, and V. Andres, “Murine models to investigate the influence of diabetic metabolism on the development of atherosclerosis and restenosis,” Frontiers in Bioscience, vol. 12, pp. 4439–4455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. J. Carter, L. Bailey, J. Devries, and B. Hubbard, “The effects of uncontrolled hyperglycemia on thrombosis and formation of neointima after coronary stent placement in a novel diabetic porcine model of restenosis,” Coronary Artery Disease, vol. 11, no. 6, pp. 473–479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. E. B. Marliss, A. F. Nakhooda, P. Poussier, and A. A. F. Sima, “The diabetic syndrome of the ‘BB’ Wistar rat: possible relevance to type 1 (insulin-dependent) diabetes in man,” Diabetologia, vol. 22, no. 4, pp. 225–232, 1982. View at Scopus
  26. J. L. Hillebrands, B. Whalen, J. T. J. Visser et al., “A regulatory CD4+ T cell subset in the BB rat model of autoimmune diabetes expresses neither CD25 nor Foxp3,” Journal of Immunology, vol. 177, no. 11, pp. 7820–7832, 2006. View at Scopus
  27. J. P. Mordes, R. Bortell, E. P. Blankenhorn, A. A. Rossini, and D. L. Greiner, “Rat models of type 1 diabetes: genetics, environment, and autoimmunity,” ILAR Journal, vol. 45, no. 3, pp. 278–291, 2004. View at Scopus
  28. A. A. Rossini, E. S. Handler, J. P. Mordes, and D. L. Greiner, “Human autoimmune diabetes mellitus: lessons from BB rats and NOD mice—Caveat emptor,” Clinical Immunology and Immunopathology, vol. 74, no. 1, pp. 2–9, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Langeveld, A. J. M. Roks, R. A. Tio et al., “Rat abdominal aorta stenting: a new and reliable small animal model for in-stent restenosis,” Journal of Vascular Research, vol. 41, no. 5, pp. 377–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Visser, F. Klatter, J. L. Hillebrands, A. Jansen, L. Vijfschaft, and J. Rozing, “Thymectomy should be the first choice in the protection of diabetes-prone BB rats for breeding purposes,” Laboratory Animals, vol. 38, no. 4, pp. 371–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. C. Mazzachi, M. J. Peake, and V. Ehrhardt, “Reference range and method comparison studies for enzymatic and Jaffe creatinine assays in plasma and serum and early morning urine,” Clinical Laboratory, vol. 46, no. 1-2, pp. 53–55, 2000. View at Scopus
  32. J. Iwata and O. Nishikaze, “New micro-turbidimetric method for determination of protein in cerebrospinal fluid and urine,” Clinical Chemistry, vol. 25, no. 7, pp. 1317–1319, 1979. View at Scopus
  33. R. W. Luxton, P. Patel, G. Keir, and E. J. Thompson, “A micro-method for measuring total protein in cerebrospinal fluid by using benzethonium chloride in microtiter plate wells,” Clinical Chemistry, vol. 35, no. 8, pp. 1731–1734, 1989. View at Scopus
  34. R. S. Schwartz, K. C. Huber, J. G. Murphy et al., “Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model,” Journal of the American College of Cardiology, vol. 19, no. 2, pp. 267–274, 1992. View at Scopus
  35. A. J. Cohen, P. D. McGill, R. G. Rossetti, D. L. Guberski, and A. A. Like, “Glomerulopathy in spontaneously diabetic rat: impact of glycemic control,” Diabetes, vol. 36, no. 8, pp. 944–951, 1987. View at Scopus
  36. P. D. Winocour and L. Hryhorenko, “Spontaneous diabetes in BB Wistar rats causes small increases in the early proliferative response of smooth muscle cells in re-injured aortae,” Experimental and Molecular Pathology, vol. 63, no. 3, pp. 161–174, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. H. C. Groenewegen, G. Onuta, M. Goris et al., “Non-bone marrow origin of neointimal smooth muscle cells in experimental in-stent restenosis in rats,” Journal of Vascular Research, vol. 45, no. 6, pp. 493–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Onuta, P. E. Westerweel, A. Zandvoort et al., “Angiogenic sprouting from the aortic vascular wall is impaired in the BB rat model of autoimmune diabetes,” Microvascular Research, vol. 75, no. 3, pp. 420–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Osada, S. Takeda, R. Ogawa, S. Komori, and K. Tamura, “T lymphocyte activation and restenosis after percutaneous transluminal coronary angioplasty,” Journal of Interferon and Cytokine Research, vol. 21, no. 4, pp. 219–221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Ø. Andersen, B. F. Hansen, P. Holm, S. Stender, and B. G. Nordestgaard, “Effect of cyclosporine on arterial balloon injury lesions in cholesterol-clamped rabbits: T lymphocyte-mediated immune responses not involved in balloon injury-induced neointimal proliferation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 7, pp. 1687–1694, 1999. View at Scopus