About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 464701, 9 pages
http://dx.doi.org/10.1155/2011/464701
Review Article

Middle Cerebral Artery Occlusion Model in Rodents: Methods and Potential Pitfalls

1Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
2Department of Neurology, University of Connecticut Health Center and The Stroke Center at Hartford Hospital, 263 Farmington Avenue, Farmington, CT 06030, USA

Received 15 September 2010; Revised 23 December 2010; Accepted 23 December 2010

Academic Editor: Andrea Vecchione

Copyright © 2011 Fudong Liu and Louise D. McCullough. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Rosamond, K. Flegal, K. Furie et al., “Heart disease and stroke statistics—2008 update: a report from the American heart association statistics committee and stroke statistics subcommittee,” Circulation, vol. 117, no. 4, pp. e25–e46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. W. M. Armstead, K. Ganguly, J. W. Kiessling et al., “Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA for treatment of CNS ischemic disorders,” Journal of Neurochemistry, vol. 113, no. 2, pp. 303–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Traystman, “Animal models of focal and global cerebral ischemia,” ILAR Journal, vol. 44, no. 2, pp. 85–95, 2003. View at Scopus
  4. J. F. Megyesi, B. Vollrath, D. A. Cook, and J. M. Findlay, “In vivo animal models of cerebral vasospasm: a review,” Neurosurgery, vol. 46, no. 2, pp. 448–461, 2000. View at Scopus
  5. S. Ashwal and W. J. Pearce, “Animal models of neonatal stroke,” Current Opinion in Pediatrics, vol. 13, no. 6, pp. 506–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Alonso De Leciñana, E. Díez-Tejedor, F. Carceller, and J. M. Roda, “Cerebral ischemia: from animal studies to clinical practice. Should the methods be reviewed?” Cerebrovascular Diseases, vol. 11, no. 1, supplement, pp. 20–30, 2001. View at Scopus
  7. X. Li, K. K. Blizzard, Z. Zeng, A. C. DeVries, P. D. Hurn, and L. D. McCullough, “Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender,” Experimental Neurology, vol. 187, no. 1, pp. 94–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Hattori, H. Lee, P. D. Hurn, B. J. Crain, R. J. Traystman, and A. C. DeVries, “Cognitive deficits after focal cerebral ischemia in mice,” Stroke, vol. 31, no. 8, pp. 1939–1944, 2000. View at Scopus
  9. A. C. DeVries, R. J. Nelson, R. J. Traystman, and P. D. Hurn, “Cognitive and behavioral assessment in experimental stroke research: will it prove useful?” Neuroscience and Biobehavioral Reviews, vol. 25, no. 4, pp. 325–342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Graham, L. D. McCullough, and S. J. Murphy, “Animal models of ischemic stroke: balancing experimental aims and animal care,” Comparative Medicine, vol. 54, no. 5, pp. 486–496, 2004. View at Scopus
  11. A. Durukan and T. Tatlisumak, “Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia,” Pharmacology Biochemistry and Behavior, vol. 87, no. 1, pp. 179–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bacigaluppi, G. Comi, and D. M. Hermann, “Animal models of ischemic stroke—part two: modeling cerebral ischemia,” The Open Neurology Journal, vol. 4, pp. 34–38, 2010.
  13. M. Philip, M. Benatar, M. Fisher, and S. I. Savitz, “Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials,” Stroke, vol. 40, no. 2, pp. 577–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. Rojas, M. C. Zurrú, M. Romano, L. Patrucco, and E. Cristiano, “Acute ischemic stroke and transient ischemic attack in the very old—risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years,” European Journal of Neurology, vol. 14, no. 8, pp. 895–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. L. M. Sudlow and C. P. Warlow, “Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration,” Stroke, vol. 28, no. 3, pp. 491–499, 1997. View at Scopus
  16. F. Liu, D. P. Schafer, and L. D. McCullough, “TTC, Fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion,” Journal of Neuroscience Methods, vol. 179, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. T. Carmichael, “Rodent models of focal stroke: size, mechanism, and purpose,” NeuroRx, vol. 2, no. 3, pp. 396–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Culmsee, C. Zhu, S. Landshamer et al., “Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia,” Journal of Neuroscience, vol. 25, no. 44, pp. 10262–10272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. C. Hoyte, M. Papadakis, P. A. Barber, and A. M. Buchan, “Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning,” Brain Research, vol. 1121, no. 1, pp. 231–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Garcia, Y. Yoshida, H. Chen et al., “Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat,” American Journal of Pathology, vol. 142, no. 2, pp. 623–635, 1993. View at Scopus
  21. B. S. Aspey, S. Cohen, Y. Patel, M. Terruli, and M. J. G. Harrison, “Middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke,” Neuropathology and Applied Neurobiology, vol. 24, no. 6, pp. 487–497, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Van Campagne, G. Roger Thomas, H. Thibodeaux et al., “Secondary reduction in the apparent diffusion coefficient of water, increase in cerebral blood volume, and delayed neuronal death after middle cerebral artery occlusion and early reperfusion in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 12, pp. 1354–1364, 1999. View at Scopus
  23. M. Hoehn, K. Nicolay, C. Franke, and B. D. Van Sanden, “Application of magnetic resonance to animal models of cerebral Ischemia,” Journal of Magnetic Resonance Imaging, vol. 14, no. 5, pp. 491–509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, K. Jin, M. Chen et al., “Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death,” Journal of Neurochemistry, vol. 69, no. 1, pp. 232–245, 1997. View at Scopus
  25. M. D. Linnik, J. A. Miller, J. Sprinkle-Cavallo et al., “Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion,” Molecular Brain Research, vol. 32, no. 1, pp. 116–124, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. P. A. Barber, L. Hoyte, D. Kirk, T. Foniok, A. Buchan, and U. Tuor, “Early T1- and T2-weighted MRI signatures of transient and permanent middle cerebral artery occlusion in a murine stroke model studied at 9.4 T,” Neuroscience Letters, vol. 388, no. 1, pp. 54–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Bardutzky, Q. Shen, N. Henninger, J. Bouley, T. Q. Duong, and M. Fisher, “Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging,” Stroke, vol. 36, no. 9, pp. 2000–2005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Duverger and E. T. MacKenzie, “The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age,” Journal of Cerebral Blood Flow and Metabolism, vol. 8, no. 4, pp. 449–461, 1988. View at Scopus
  29. K. Engelhard, C. Werner, W. E. Hoffman, B. Matthes, M. Blobner, and E. Kochs, “The effect of sevoflurane and propofol on cerebral neurotransmitter concentrations during cerebral ischemia in rats,” Anesthesia and Analgesia, vol. 97, no. 4, pp. 1155–1161, 2003. View at Scopus
  30. C. J. Cassady, J. W. Phillis, and M. H. O'Regan, “Further studies on the effects of topical lactate on amino acid efflux from the ischemic rat cortex,” Brain Research, vol. 901, no. 1-2, pp. 30–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Liu, Z. Li, J. Li, C. Siegel, R. Yuan, and L. D. Mccullough, “Sex differences in caspase activation after stroke,” Stroke, vol. 40, no. 5, pp. 1842–1848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Tuttolomondo, R. Di Sciacca, D. Di Raimondo, C. Renda, A. Pinto, and G. Licata, “Inflammation as a therapeutic target in acute ischemic stroke treatment,” Current Topics in Medicinal Chemistry, vol. 9, no. 14, pp. 1240–1260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. C. Schmued and K. J. Hopkins, “Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration,” Brain Research, vol. 874, no. 2, pp. 123–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Tureyen, R. Vemuganti, K. A. Sailor, and R. J. Dempsey, “Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques,” Journal of Neuroscience Methods, vol. 139, no. 2, pp. 203–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Lloyd-Jones, R. J. Adams, T. M. Brown et al., “Heart disease and stroke statistics—2010 update: a report from the American heart association,” Circulation, vol. 121, no. 7, pp. e46–e215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. S. Plump, J. D. Smith, T. Hayek et al., “Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells,” Cell, vol. 71, no. 2, pp. 343–353, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Nabika, Z. Cui, and J. Masuda, “The stroke-prone spontaneously hypertensive rat: how good is it as a model for cerebrovascular diseases,” Cellular and Molecular Neurobiology, vol. 24, no. 5, pp. 639–646, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Watanabe, J. Osada, Y. Aratani et al., “Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1585–1589, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Rasmussen, O. Kohler, S. Worm-Petersen et al., “Computed tomography in prognostic stroke evaluation,” Stroke, vol. 23, no. 4, pp. 506–510, 1992. View at Scopus
  40. E. C. Anyanwu, “Neurochemical changes in the aging process: implications in medication in the elderly,” TheScientific World Journal, vol. 7, pp. 1603–1610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Liu, R. Yuan, S. E. Benashski, and L. D. McCullough, “Changes in experimental stroke outcome across the life span,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 4, pp. 792–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Liu, P. Akella, S. E. Benashski, Y. Xu, and L. D. McCullough, “Expression of Na-K-Cl cotransporter and edema formation are age dependent after ischemic stroke,” Experimental Neurology, vol. 29, no. 4, pp. 792–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Jaramillo, F. Góngora-Rivera, J. Labreuche, J. J. Hauw, and P. Amarenco, “Predictors for malignant middle cerebral artery infarctions: a postmortem analysis,” Neurology, vol. 66, no. 6, pp. 815–820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Hofmeijer, A. Algra, L. J. Kappelle, and H. B. Van Der Worp, “Predictors of life-threatening brain edema in middle cerebral artery infarction,” Cerebrovascular Diseases, vol. 25, no. 1-2, pp. 176–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Abete, F. Cacciatore, G. Testa et al., “Ischemic preconditioning in the aging heart: from bench to bedside,” Ageing Research Reviews, vol. 9, no. 2, pp. 153–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Li, Z. Zeng, B. Viollet, G. V. Ronnett, and L. D. McCullough, “Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke,” Stroke, vol. 38, no. 11, pp. 2992–2999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. D. McCullough, Z. Zeng, H. Li, L. E. Landree, J. McFadden, and G. V. Ronnett, “Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20493–20502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. D. Ginsberg, “Neuroprotection for ischemic stroke: past, present and future,” Neuropharmacology, vol. 55, no. 3, pp. 363–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Kharlamov, E. Kharlamov, and D. M. Armstrong, “Age-dependent increase in infarct volume following photochemically induced cerebral infarction: putative role of astroglia,” Journals of Gerontology. Series A, vol. 55, no. 3, pp. B135–B141, 2000. View at Scopus
  50. G. R. Sutherland, G. A. Dix, and R. N. Auer, “Effect of age in rodent models of focal and forebrain ischemia,” Stroke, vol. 27, no. 9, pp. 1663–1668, 1996. View at Scopus
  51. S. Shapira, M. Sapir, A. Wengier, E. Grauer, and T. Kadar, “Aging has a complex effect on a rat model of ischemic stroke,” Brain Research, vol. 925, no. 2, pp. 148–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. K. P. Doyle, E. Cekanaviciute, L. E. Mamer, and M. S. Buckwalter, “TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke,” Journal of Neuroinflammation, vol. 7, article no. 62, 2010. View at Publisher · View at Google Scholar
  53. R. Y. Wang, P. S. G. Wang, and Y. R. Yang, “Effect of age in rats following middle cerebral artery occlusion,” Gerontology, vol. 49, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Poli, E. Antonucci, E. Grifoni, R. Abbate, G. F. Gensini, and D. Prisco, “Gender differences in stroke risk of atrial fibrillation patients on oral anticoagulant treatment,” Thrombosis and Haemostasis, vol. 101, no. 5, pp. 938–942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. D. M. Kent, A. M. Buchan, and M. D. Hill, “The gender effect in stroke thrombolysis: of CASES, controls, and treatment-effect modification,” Neurology, vol. 71, no. 14, pp. 1080–1083, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. E. D. Hall and R. J. Traystman, “Role of animal studies in the design of clinical trials,” Frontiers of Neurology and Neuroscience, vol. 25, pp. 10–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Lanzino, N. F. Kassell, N. W. C. Dorsch et al., “Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage—part I. A cooperative study in Europe, Australia, New Zealand, and South Africa,” Journal of Neurosurgery, vol. 90, no. 6, pp. 1011–1017, 1999. View at Scopus
  58. R. L. Sacco, et al., “American Heart Association Prevention Conference. IV. Prevention and rehabilitation of stroke. Risk factors,” Stroke, vol. 28, no. 7, pp. 1507–1517, 1997.
  59. N. K. Wenger, L. Speroff, and B. Packard, “Cardiovascular health and disease in women,” New England Journal of Medicine, vol. 329, no. 4, pp. 247–256, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Paganini-Hill, “Hormone replacement therapy and stroke: risk, protection or no effect?” Maturitas, vol. 38, no. 3, pp. 243–261, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. J. W. Simpkins, S. H. Yang, Y. Wen, and M. Singh, “Estrogens, progestins, menopause and neurodegeneration: basic and clinical studies,” Cellular and Molecular Life Sciences, vol. 62, no. 3, pp. 271–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. L. D. McCullough, N. J. Alkayed, R. J. Traystman, M. J. Williams, and P. D. Hurn, “Postischemic estrogen reduces hypoperfusion and secondary ischemia after experimental stroke,” Stroke, vol. 32, no. 3, pp. 796–802, 2001. View at Scopus
  63. L. D. McCullough and P. D. Hurn, “Estrogen and ischemic neuroprotection: an integrated view,” Trends in Endocrinology and Metabolism, vol. 14, no. 5, pp. 228–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. N. J. Alkayed, S. J. Murphy, R. J. Traystman, and P. D. Hurn, “Neuroprotective effects of female gonadal steroids in reproductively senescent female rats,” Stroke, vol. 31, no. 1, pp. 161–168, 2000. View at Scopus
  65. T. J. Toung, T. Y. Chen, M. T. Littleton-Kearney, P. D. Hurn, and S. J. Murphy, “Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 10, pp. 1160–1166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. S. J. Murphy, L. D. McCullough, and J. M. Smith, “Stroke in the female: role of biological sex and estrogen,” ILAR journal / National Research Council, Institute of Laboratory Animal Resources, vol. 45, no. 2, pp. 147–159, 2004. View at Scopus
  67. R. A. Lobo, “Menopause and stroke and the effects of hormonal therapy,” Climacteric, vol. 10, no. 2, supplement, pp. 27–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Wassertheil-Smoller, S. L. Hendrix, M. Limacher et al., “Effect of estrogen plus progestin on stroke in postmenopausal women—the women's health initiative: a randomized trial,” Journal of the American Medical Association, vol. 289, no. 20, pp. 2673–2684, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Suzuki, C. M. Brown, C. D. Dela Cruz, E. Yang, D. A. Bridwell, and P. M. Wise, “Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 6013–6018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. L. Prentice, R. Langer, M. L. Stefanick et al., “Combined postmenopausal hormone therapy and cardiovascular disease: toward resolving the discrepancy between observational studies and the Women's Health Initiative clinical trial,” American Journal of Epidemiology, vol. 162, no. 5, pp. 404–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. R. L. Prentice, R. D. Langer, M. L. Stefanick et al., “Combined analysis of women's health initiative observational and clinical trial data on postmenopausal hormone treatment and cardiovascular disease,” American Journal of Epidemiology, vol. 163, no. 7, pp. 589–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. O. Strom, E. Theodorsson, L. Holm, and A. Theodorsson, “Different methods for administering 17β-estradiol to ovariectomized rats result in opposite effects on ischemic brain damage,” BMC Neuroscience, vol. 11, article no. 39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. D. Farr, H. V. O. Carswell, L. Gallagher et al., “17β-Estradiol treatment following permanent focal ischemia does not influence recovery of sensorimotor function,” Neurobiology of Disease, vol. 23, no. 3, pp. 552–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. T. Lang and L. D. McCullough, “Pathways to ischemic neuronal cell death: are sex differences relevant?” Journal of Translational Medicine, vol. 6, article no. 33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Renolleau, S. Fau, C. Goyenvalle et al., “Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender,” Journal of Neurochemistry, vol. 100, no. 4, pp. 1062–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. L. D. McCullough, Z. Zeng, K. K. Blizzard, I. Debchoudhury, and P. D. Hurn, “Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 4, pp. 502–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Yuan, C. Siegel, Z. Zeng, J. Li, F. Liu, and L. D. McCullough, “Sex differences in the response to activation of the poly (ADP-ribose) polymerase pathway after experimental stroke,” Experimental Neurology, vol. 217, no. 1, pp. 210–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Li and L. D. McCullough, “Sex differences in minocycline-induced neuroprotection after experimental stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 4, pp. 670–674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. L. LaPrairie and A. Z. Murphy, “Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury,” Pain, vol. 132, no. 1, pp. S124–S133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Candore, C. R. Balistreri, F. Listì et al., “Immunogenetics, gender, and longevity,” Annals of the New York Academy of Sciences, vol. 1089, pp. 516–537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. De la Fuente, I. Baeza, N. Guayerbas et al., “Changes with ageing in several leukocyte functions of male and female rats,” Biogerontology, vol. 5, no. 6, pp. 389–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. K. Relton, D. Martin, R. C. Thompson, and D. A. Russell, “Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat,” Experimental Neurology, vol. 138, no. 2, pp. 206–213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Tarkowski, L. Rosengren, C. Blomstrand et al., “Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke,” Stroke, vol. 26, no. 8, pp. 1393–1398, 1995. View at Scopus
  84. C. Siegel, C. Turtzo, and L. D. McCullough, “Sex differences in cerebral ischemia: possible molecular mechanisms,” Journal of Neuroscience Research, vol. 88, no. 13, pp. 2765–2774, 2010. View at Publisher · View at Google Scholar