About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 907575, 12 pages
http://dx.doi.org/10.1155/2011/907575
Review Article

Atherosclerosis and Thrombosis: Insights from Large Animal Models

1Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain
2CIBERobn, Barcelona, Spain
3Autonomous University of Barcelona (UAB), Barcelona, Spain

Received 23 September 2010; Accepted 9 December 2010

Academic Editor: Oreste Gualillo

Copyright © 2011 Gemma Vilahur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Badimón, G. Vilahur, and T. Padró, “Lipoproteins, platelets and atherothrombosis,” Revista Espanola de Cardiologia, vol. 62, no. 10, pp. 1161–1178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Svenson, M. A. Bogue, and L. L. Peters, “Invited review: identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains,” Journal of Applied Physiology, vol. 94, no. 4, pp. 1650–1659, 2003.
  3. R. J. Shebuski, L. R. Bush, A. Gagnon, L. Chi, and R. J. Leadley Jr., “Development and applications of animal models of thrombosis,” Methods in molecular medicine, vol. 93, pp. 175–219, 2004. View at Scopus
  4. L. A. Harker, A. B. Kelly, and S. R. Hanson, “Experimental arterial thrombosis in nonhuman primates,” Circulation, vol. 83, no. 6, pp. V-41–V-55, 1991. View at Scopus
  5. G. J. Johnson, T. R. Griggs, and L. Badimon, “The utility of animal models in the preclinical study of interventions to prevent human coronary artery restenosis: analysis and recommendations,” Thrombosis and Haemostasis, vol. 81, no. 5, pp. 835–843, 1999.
  6. C. V. Denis and D. D. Wagner, “Insights from von Willebrand disease animal models,” Cellular and Molecular Life Sciences, vol. 56, no. 11-12, pp. 977–990, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. Gross, “Thromboembolic phenomena and the use of the pig as an appropriate animal model for research on cardiovascular devices,” International Journal of Artificial Organs, vol. 20, no. 4, pp. 195–203, 1997. View at Scopus
  8. A. K. Olsen, A. K. Hansen, J. Jespersen, P. Marckmann, and E. M. Bladbjerg, “The pig as a model in blood coagulation and fibrinolysis research,” Scandinavian Journal of Laboratory Animal Science, vol. 26, no. 4, pp. 214–224, 1999. View at Scopus
  9. S. Pedersen, I. Saeed, H. Friis, and K. F. Michaelsen, “Effect of iron deficiency on Trichuris suis and Ascaris suum infections in pigs,” Parasitology, vol. 122, no. 5, pp. 589–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Royo, M. Vidal, and L. Badimon, “Purification of the porcine platelet GP IIb-IIIa complex and the propolypeptide of von Willebrand factor,” Thrombosis and Haemostasis, vol. 80, no. 2, pp. 302–309, 1998. View at Scopus
  11. T. Royo and L. Badimon, “The propolypeptide of von Willebrand factor (pp-vWF) is immunolocalized in the golgi apparatus of porcine aortic endothelial cells,” Thrombosis and Haemostasis, 1999, (# 1838) 583.
  12. S. E. Burke, A. M. Lefer, K. C. Nicolaou, G. M. Smith, and J. B. Smith, “Responsiveness of platelets and coronary arteries from different species to synthetic thromboxane and prostaglandin endoperoxide analogues,” British Journal of Pharmacology, vol. 78, no. 2, pp. 287–292, 1983. View at Scopus
  13. J. Strony, A. Beaudoin, D. Brands, and B. Adelman, “Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis,” American Journal of Physiology, vol. 265, no. 5, pp. H1787–H1796, 1993. View at Scopus
  14. P. F. Bodary and D. T. Eitzman, “Animal models of thrombosis,” Current Opinion in Hematology, vol. 16, no. 5, pp. 342–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Narayanaswamy, K. C. Wright, and K. Kandarpa, “Animal models for atherosclerosis, restenosis, and endovascular graft research,” Journal of Vascular and Interventional Radiology, vol. 11, no. 1, pp. 5–17, 2000. View at Scopus
  16. U. J. H. Sachs and B. Nieswandt, “In vivo thrombus formation in murine models,” Circulation Research, vol. 100, no. 7, pp. 979–991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Xiang, J. Naik, and R. L. Hester, “Exercise-induced increase in skeletal muscle vasodilatory responses in obese Zucker rats,” American Journal of Physiology, vol. 288, no. 4, pp. R987–R991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Furie and B. C. Furie, “In vivo thrombus formation,” Journal of Thrombosis and Haemostasis, vol. 5, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Nieswandt, B. Aktas, A. Moers, and U. J. H. Sachs, “Platelets in atherothrombosis: lessons from mouse models,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1725–1736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Carmeliet, L. Moons, and D. Collen, “Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis,” Cardiovascular Research, vol. 39, no. 1, pp. 8–33, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Chou, N. Mackman, G. Merrill-Skoloff, B. Pedersen, B. C. Furie, and B. Furie, “Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation,” Blood, vol. 104, no. 10, pp. 3190–3197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Day, J. L. Reeve, B. Pedersen et al., “Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall,” Blood, vol. 105, no. 1, pp. 192–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. LI. Wang, C. Miller, R. F. Swarthout, M. Rao, N. Mackman, and M. B. Taubman, “Vascular smooth muscle-derived tissue factor is critical for arterial thrombosis after ferric chloride-induced injury,” Blood, vol. 113, no. 3, pp. 705–713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Sánchez-Gómez, L. Casani, G. Vilahur, and L. Badimon, “FFR-rFVIIa inhibits thrombosis triggered by ruptured and eroded vessel wall,” Thrombosis and Haemostasis, 2001, abstract OC999.
  25. D. A. Tsakiris, L. Scudder, K. Hodivala-Dilke, R. O. Hynes, and B. S. Coller, “Hemostasis in the mouse (Mus musculus): a review,” Thrombosis and Haemostasis, vol. 81, no. 2, pp. 177–188, 1999. View at Scopus
  26. J. Ware, “Dysfunctional platelet membrane receptors: from humans to mice,” Thrombosis and Haemostasis, vol. 92, no. 3, pp. 478–485, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Farb, A. P. Burke, A. L. Tang et al., “Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death,” Circulation, vol. 93, no. 7, pp. 1354–1363, 1996. View at Scopus
  28. M. E. Todd, E. McDevitt, and E. I. Goldsmith, “Blood-clotting mechanisms of nonhuman primates. Choice of the baboon model to simulate man,” Journal of Medical Primatology, vol. 1, no. 3, pp. 132–141, 1972. View at Scopus
  29. M. R. Malinow and C. A. Maruffo, “Aortic atherosclerosis in free-ranging howler monkeys (Alouatta caraya),” Nature, vol. 206, no. 4987, pp. 948–949, 1965. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Scanu, A. Khalil, L. Neven et al., “Genetically determined hypercholesterolemia in a rhesus monkey family due to a deficiency of the LDL receptor,” Journal of Lipid Research, vol. 29, no. 12, pp. 1671–1681, 1988. View at Scopus
  31. Y. Kusumi, A. M. Scanu, H. C. McGill, and R. W. Wissler, “Atherosclerosis in a rhesus monkey with genetic hypercholesterolemia and elevated plasma (Lp(a),” Atherosclerosis, vol. 99, no. 2, pp. 165–174, 1993. View at Scopus
  32. Y. Cadroy, S. R. Hanson, and L. A. Harker, “Antithrombotic effects of synthetic pentasaccharide with high affinity for plasma antithrombin III in non-human primates,” Thrombosis and Haemostasis, vol. 70, no. 4, pp. 631–635, 1993. View at Scopus
  33. T. Royo, J. Alfón, M. Berrozpe, and L. Badimon, “Effect of gemfibrozil on peripheral atherosclerosis and platelet activation in a pig model of hyperlipidemia,” European Journal of Clinical Investigation, vol. 30, no. 10, pp. 843–852, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. C. P. Palazón, J. Alfón, P. Gaffney, M. Berrozpe, T. Royo, and L. Badimon, “Effects of reducing LDL and increasing HDL with gemfibrozil in experimental coronary lesion development and thrombotic risk,” Atherosclerosis, vol. 136, no. 2, pp. 333–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Fuster, J. T. Lie, and L. Badimon, “Spontaneous and diet-induced coronary atherosclerosis in normal swine and swine with von Willebrand disease,” Arteriosclerosis, vol. 5, no. 1, pp. 67–73, 1985. View at Scopus
  36. L. Badimon, P. Steele, and J. J. Badimon, “Aortic atherosclerosis in pigs with heterozygous von Willebrand disease. Comparison with homozygous von Willebrand and normal pigs,” Arteriosclerosis, vol. 5, no. 4, pp. 366–370, 1985. View at Scopus
  37. T. Gardner and D. Johnson, “Cardiovascular system,” in Experimental Surgery and Physiology: Induced Animal Models of Human Disease, M. M. Swindle and R. J. Adams, Eds., pp. 74–124, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 1988.
  38. M. M. Swindle, P. J. Horneffer, and T. J. Gardner, “Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine,” Laboratory Animal Science, vol. 36, no. 4, pp. 357–361, 1986.
  39. C. Bloor, F. White, and D. Roth, “The pig as a model of myocardial ischemia and gradual coronary artery occlusion,” in Swine as Models in Biomedical Research, M. M. Swindle, Ed., pp. 163–175, Iowa State University Press, Ames, Iowa, USA, 1992.
  40. C. White, S. Ramee, A. Banks, D. Wiktor, and H. Price, “The Yucatan miniature swine: an atherogenic model to assess the early potency rates of an endovascular stent,” in Swine as Models in Biomedical Research, M. M. Swindle, Ed., pp. 156–162, Iowa State University Press, Ames, Iowa, USA, 1992.
  41. V. Fuster, L. Badimon, J. J. Badimon, J. H. Ip, and J. H. Chesebro, “The porcine model for the understanding of thrombogenesis and atherogenesis,” Mayo Clinic Proceedings, vol. 66, no. 8, pp. 818–831, 1991. View at Scopus
  42. B. H. Skold, R. Getty, and F. K. Ramsey, “Spontaneous atherosclerosis in the arterial system of aging swine,” American Journal of Veterinary Research, vol. 27, no. 116, pp. 257–273, 1966. View at Scopus
  43. L. Casani, S. Sanchez-Gomez, G. Vilahur, and L. Badimon, “Pravastatin reduces thrombogenicity by mechanisms beyond plasma cholesterol lowering,” Thrombosis and Haemostasis, vol. 94, no. 5, pp. 1035–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Gal, S. K. Chokshi, M. Mosseri, R. H. Clarke, and J. M. Isner, “Percutaneous delivery of low-level laser energy reverses histamine-induced spasm in atherosclerotic Yucatan microswine,” Circulation, vol. 85, no. 2, pp. 756–768, 1992. View at Scopus
  45. F. C. White, S. M. Carroll, A. Magnet, and C. M. Bloor, “Coronary collateral development in swine after coronary artery occlusion,” Circulation Research, vol. 71, no. 6, pp. 1490–1500, 1992. View at Scopus
  46. F. C. White and C. M. Bloor, “Coronary vascular remodeling and coronary resistance during chronic ischemia,” American Journal of Cardiovascular Pathology, vol. 4, no. 3, pp. 193–202, 1992. View at Scopus
  47. C. A. Marzetta and L. L. Rudel, “A species comparison of low density lipoprotein heterogeneity in nonhuman primates fed atherogenic diets,” Journal of Lipid Research, vol. 27, no. 7, pp. 753–762, 1986. View at Scopus
  48. M. M. Swindle, “Defining appropriate health status and management programs for specific-pathogen-free swine for xenotransplantation,” Annals of the New York Academy of Sciences, vol. 862, pp. 111–120, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. H Stanton and H Mersmann, Swine in Cardiovascular Research, vol. 1 & 2, CRC Press, Boca Raton, Fla, USA, 1986.
  50. L. Jørgensen, “The role of platelets in the initial stages of atherosclerosis,” Journal of Thrombosis and Haemostasis, vol. 4, no. 7, pp. 1443–1449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Fernandez-Ortiz, J. J. Badimon, E. Falk et al., “Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture,” Journal of the American College of Cardiology, vol. 23, no. 7, pp. 1562–1569, 1994. View at Scopus
  52. L. Badimon, J. J. Badimon, and A. Galvez, “Influence of arterial damage and wall shear rate on platelet deposition. Ex vivo study in a swine model,” Arteriosclerosis, vol. 6, no. 3, pp. 312–320, 1986. View at Scopus
  53. G. Vilahur, X. Duran, O. Juan-Babot, L. Casaní, and L. Badimon, “Antithrombotic effects of saratin on human atherosclerotic plaques,” Thrombosis and Haemostasis, vol. 92, no. 1, pp. 191–200, 2004. View at Scopus
  54. L. Badimon and J. J. Badimon, “Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model,” Journal of Clinical Investigation, vol. 84, no. 4, pp. 1134–1144, 1989. View at Scopus
  55. G. Vilahur, E. Segales, E. Salas, and L. Badimon, “Effects of a novel platelet nitric oxide donor (LA816), aspirin, clopidogrel, and combined therapy in inhibiting flow- and lesion-dependent thrombosis in the porcine ex vivo model,” Circulation, vol. 110, no. 12, pp. 1686–1693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Roussi, N. Berge, C. Bal Dit Sollier et al., “Clopidogrel-induced qualitative changes in thrombus formation correlate with stent patency in injured pig cervical arteries,” Thrombosis Research, vol. 105, no. 3, pp. 209–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Mailhac, J. J. Badimon, J. T. Fallon et al., “Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis: relative contribution of fibrin(ogen) and platelets,” Circulation, vol. 90, no. 2, pp. 988–996, 1994. View at Scopus
  58. M. Roqué, U. Rauch, E. D. Reis, J. H. Chesebro, V. Fuster, and J. J. Badimon, “Comparative study of antithrombotic effect of a low molecular weight heparin and unfractionated heparin in an ex vivo model of deep arterial injury,” Thrombosis Research, vol. 98, no. 6, pp. 499–505, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Shimbo, J. Osende, J. Chen et al., “Antithrombotic effects of DX-9065a, a direct factor Xa inhibitor: a comparative study in humans versus low molecular weight heparin,” Thrombosis and Haemostasis, vol. 88, no. 5, pp. 733–738, 2002. View at Scopus
  60. G. Vilahur, E. Segalés, L. Casaní, and L. Badimon, “A novel anti-ischemic nitric oxide donor inhibits thrombosis without modifying haemodynamics parameters,” Thrombosis and Haemostasis, vol. 91, no. 5, pp. 1035–1043, 2004. View at Scopus
  61. H. R. Baumgartner, “The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi,” Microvascular Research, vol. 5, no. 2, pp. 167–179, 1973. View at Publisher · View at Google Scholar
  62. K. S. Sakariassen, P. A. M. M. Aarts, and P. G. De Groot, “A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components,” Journal of Laboratory and Clinical Medicine, vol. 102, no. 4, pp. 522–535, 1983.
  63. E. Martines, K. McGhee, C. Wilkinson, and A. Curtis, “A Parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface,” IEEE Transactions on Nanobioscience, vol. 3, no. 2, pp. 90–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Badimon, V. Turitto, J. A. Rosemark, J. J. Badimon, and V. Fuster, “Caracterization of a tubular flow chamber for studying platelet interaction with biologic and prosthetic materials: deposition of indium 111-labeled plateles on collagen, subendothelium and expanded polytetrafluoroethylene,” Journal of Laboratory and Clinical Medicine, vol. 110, no. 6, pp. 706–718, 1987. View at Scopus
  65. R. Lassila, J. J. Badimon, S. Vallabhajosula, and L. Badimon, “Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood. Effects of different stenoses on thrombus growth,” Arteriosclerosis, vol. 10, no. 2, pp. 306–315, 1990. View at Scopus
  66. L. Badimon, J. J. Badimon, V. T. Turitto, and V. Fuster, “Role of von Willebrand factor in platelet interaction with an expanded PTFE surface,” ASAIO Transactions, vol. 33, no. 3, pp. 621–625, 1987. View at Scopus
  67. L. Badimon, J. J. Badimon, V. T. Turitto, and V. Fuster, “Thrombosis: studies under flow conditions,” Annals of the New York Academy of Sciences, vol. 516, pp. 527–540, 1987. View at Scopus
  68. L. Badimon, J. J. Badimon, J. Rand, V. T. Turitto, and V. Fuster, “Platelet deposition on von Willebrand factor-deficient vessels. Extracorporeal perfusion studies in swine with von Willebrand's disease using native and heparinized blood,” Journal of Laboratory and Clinical Medicine, vol. 110, no. 5, pp. 634–647, 1987. View at Scopus
  69. J. J. Badimon, L. Badimon, V. T. Turitto, and V. Fuster, “Platelet deposition at higher shear rates is enhanced by high plasma cholesterol levels. In vivo study in the rabbit model,” Arteriosclerosis and Thrombosis, vol. 11, no. 2, pp. 395–402, 1991. View at Scopus
  70. J. I. Osende, J. J. Badimon, V. Fuster et al., “Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control,” Journal of the American College of Cardiology, vol. 38, no. 5, pp. 1307–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Vilahur, L. Casani, and L. Badimon, “A thromboxane A/prostaglandin H receptor antagonist (S18886) shows high antithrombotic efficacy in an experimental model of stent-induced thrombosis,” Thrombosis and Haemostasis, vol. 98, no. 3, pp. 662–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Vilahur, M. I. Baldellou, E. Segalés, E. Salas, and L. Badimon, “Inhibition of thrombosis by a novel platelet selective S-nitrosothiol compound without hemodynamic side effects,” Cardiovascular Research, vol. 61, no. 4, pp. 806–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Vilahur, E. Pena, T. Padró, and L. Badimon, “Protein disulphide isomerase-mediated LA419- NO release provides additional antithrombotic effects to the blockade of the ADP receptor,” Thrombosis and Haemostasis, vol. 97, no. 4, pp. 650–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. M. U. Zafar, G. Vilahur, B. G. Choi et al., “A novel anti-ischemic nitric oxide donor (LA419) reduces thrombogenesis in healthy human subjects,” Journal of Thrombosis and Haemostasis, vol. 5, no. 6, pp. 1195–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. E. I. Lev, D. Hasdai, E. Scapa et al., “Administration of eptifibatide to acute coronary syndrome patients receiving enoxaparin or unfractionated heparin: effect on platelet function and thrombus formation,” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 966–971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC, USA, 1996.
  77. E. R. Edelman and C. Rogers, “Pathobiologic responses to stenting,” American Journal of Cardiology, vol. 81, no. 7A, pp. 4E–6E, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. H. C. Lowe, S. N. Oesterle, and L. M. Khachigian, “Coronary in-stent restenosis: current status and future strategies,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 183–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. G. P. Rodgers, S. T. Minor, K. Robinson et al., “Adjuvant therapy for intracoronary stents. Investigations in atherosclerotic swine,” Circulation, vol. 82, no. 2, pp. 560–569, 1990. View at Scopus
  80. A. H. Gershlick and J. Baron, “Dealing with in-stent restenosis,” Heart, vol. 79, no. 4, pp. 319–323, 1998. View at Scopus
  81. M. Kirchengast, “Endothelin receptor blockade and in-stent restenosis,” Journal of Cardiovascular Pharmacology, vol. 38, no. 2, pp. S31–S34, 2002. View at Scopus
  82. S. Ishiwata, S. Verheye, K. A. Robinson et al., “Inhibition of neointima formation by tranilast in pig coronary arteries after balloon angioplasty and stent implantation,” Journal of the American College of Cardiology, vol. 35, no. 5, pp. 1331–1337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. A. B. Buchwald, C. Unterberg, K. Nebendahl, H. J. Grone, and V. Wiegand, “Low-molecular-weight heparin reduces neointimal proliferation after coronary stent implantation in hypercholesterolemic minipigs,” Circulation, vol. 86, no. 2, pp. 531–537, 1992. View at Scopus
  84. I. De Scheerder, K. Wang, K. Wilczek et al., “Local methylprednisolone inhibition of foreign body response to coated intracoronary stents,” Coronary Artery Disease, vol. 7, no. 2, pp. 161–166, 1996. View at Scopus
  85. E. Alt, I. Haehnel, C. Beilharz et al., “Inhibition of neointima formation after experimental coronary artery stenting: a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprost,” Circulation, vol. 101, no. 12, pp. 1453–1458, 2000. View at Scopus
  86. R. W. Mahley, K. H. Weisgraber, and T. Innerarity, “Canine lipoproteins and atherosclerosis. II. Characterization of the plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia,” Circulation Research, vol. 35, no. 5, pp. 722–733, 1974. View at Scopus
  87. A. Butkus, L. A. Ehrhart, and K. G. McCullagh, “Plasma and aortic lipids in experimental canine atherosclerosis,” Experimental and Molecular Pathology, vol. 25, no. 2, pp. 152–162, 1976. View at Scopus
  88. J. D. Folts, E. B. Crowell Jr., and G. G. Rowe, “Platelet aggregation in partially obstructed vessels and its elimination with aspirin,” Circulation, vol. 54, no. 3, pp. 365–370, 1976. View at Scopus
  89. J. W. Aiken, R. R. Gorman, and R. J. Shebuski, “Prevention of blockage of partially obstructed coronary arteries with prostacyclin correlates with inhibition of platelet aggregation,” Prostaglandins, vol. 17, no. 4, pp. 483–494, 1979. View at Scopus
  90. J. D. Folts, K. Gallagher, and G. G. Rowe, “Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation?” Circulation, vol. 65, no. 2, pp. 248–255, 1982. View at Scopus
  91. M. A. Holahan, M. J. Mellott, V. M. Garsky, and R. J. Shebuski, “Prevention of reocclusion following tissue type plasminogen activator-induced thrombolysis by the RGD-containing peptide, echistatin, in a canine model of coronary thrombosis,” Pharmacology, vol. 42, no. 6, pp. 340–348, 1991. View at Scopus
  92. B. S. Coller and L. E. Scudder, “Inhibition of dog platelet function by in vivo infusion of F(ab') fragments of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor,” Blood, vol. 66, no. 6, pp. 1456–1459, 1985. View at Scopus
  93. R. M. Califf, “Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty,” New England Journal of Medicine, vol. 330, no. 14, pp. 956–961, 1994. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Théroux, “Inhibition of the platelet glycoprotein IIb/IIIa receptor with tirofiban in unstable angina and non-Q-wave myocardial infarction,” New England Journal of Medicine, vol. 338, no. 21, pp. 1488–1497, 1998. View at Publisher · View at Google Scholar
  95. S. R. Bergmann, K. A. A. Fox, and M. M. Ter Pogossian, “Clot-selective coronary thrombolysis with tissue-type plasminogen activator,” Science, vol. 220, no. 4602, pp. 1181–1183, 1983. View at Scopus
  96. P. Golino, J. H. Ashton, P. Glas-Greenwalt, J. McNatt, L. M. Buja, and J. T. Willerson, “Mediation of reocclusion by thromboxane A2 and serotonin after thrombolysis with tissue-type plasminogen activator in a canine preparation of coronary thrombosis,” Circulation, vol. 77, no. 3, pp. 678–684, 1988. View at Scopus
  97. L. R. Bush, M. J. Mellott, S. M. Kanovsky, M. A. Holahan, and D. H. Patrick, “A model of femoral artery thrombolysis in dogs,” Fibrinolysis, vol. 3, no. 2, pp. 107–114, 1989. View at Scopus
  98. H. K. Gold, J. T. Fallon, and T. Yasuda, “Coronary thrombolysis with recombinant human tissue-type plasminogen activator,” Circulation, vol. 70, no. 4, pp. 700–707, 1984.
  99. R. L. Reddick, S. H. Zhang, and N. Maeda, “Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice,” Atherosclerosis, vol. 140, no. 2, pp. 297–305, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. S. D. Gertz, J. T. Fallon, R. Gallo et al., “Hirudin reduces tissue factor expression in neointima after balloon injury in rabbit femoral and porcine coronary arteries,” Circulation, vol. 98, no. 6, pp. 580–587, 1998.
  101. M. D. Rekhter, G. W. Hicks, D. W. Brammer et al., “Animal model that mimics atherosclerotic plaque rupture,” Circulation Research, vol. 83, no. 7, pp. 705–713, 1998. View at Scopus
  102. D. T. Eitzman, R. J. Westrick, Z. Xu, J. Tyson, and D. Ginsburg, “Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 7, pp. 1831–1834, 2000. View at Scopus
  103. P. Constantinides and R. N. Chakravarti, “Rabbit arterial thrombosis production by systemic procedures,” Archives of Pathology, vol. 72, pp. 197–208, 1961.
  104. G. S. Abela, P. D. Picon, S. E. Friedl et al., “Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model,” Circulation, vol. 91, no. 3, pp. 776–784, 1995. View at Scopus
  105. M. Nakamura, S. Abe, and N. Kinukawa, “Aortic medial necrosis with or without thrombosis in rabbits treated with Russell's viper venom and angiotensin II,” Atherosclerosis, vol. 128, no. 2, pp. 149–156, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. M. D. Rekhter, G. W. Hicks, D. W. Brammer et al., “Hypercholesterolemia causes mechanical weakening of rabbit atheroma: local collagen loss as a prerequisite of plaque rupture,” Circulation Research, vol. 86, no. 1, pp. 101–108, 2000. View at Scopus
  107. M. Heras, J. H. Chesebro, W. J. Penny, K. R. Bailey, L. Badimon, and V. Fuster, “Effects of thrombin inhibition on the development of acute platelet-thrombus deposition during angioplasty in pigs. Heparin versus recombinant hirudin, a specific thrombin inhibitor,” Circulation, vol. 79, no. 3, pp. 657–665, 1989. View at Scopus
  108. L. Badimon, J. J. Badimon, V. T. Turitto, S. Vallabhajosula, and V. Fuster, “Platelet thrombus formation on collagen type I. A model of deep vessel injury: Influence of blood rheology, von Willebrand factor, and blood coagulation,” Circulation, vol. 78, no. 6, pp. 1431–1442, 1988. View at Scopus
  109. W. Fuster, E. J. Bowie, J. C. Lewis, D. N. Fass, C. A. Owen, and A. L. Brown, “Resistance to arteriosclerosis in pigs with von Willebrand's disease. Spontaneous and high cholesterol diet-induced arteriosclerosis,” Journal of Clinical Investigation, vol. 61, no. 3, pp. 722–730, 1978. View at Scopus
  110. V. Fuster, D. N. Fass, and M. P. Kaye, “Arteriosclerosis in normal and von Willebrand pigs. Long-term prospective study and aortic transplantation study,” Circulation Research, vol. 51, no. 5, pp. 587–593, 1982.
  111. Z. M. Ruggeri, J. N. Orje, R. Habermann, A. B. Federici, and A. J. Reininger, “Activation-independent platelet adhesion and aggregation under elevated shear stress,” Blood, vol. 108, no. 6, pp. 1903–1910, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. A. J. Reininger, H. F. G. Heijnen, H. Schumann, H. M. Specht, W. Schramm, and Z. M. Ruggeri, “Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress,” Blood, vol. 107, no. 9, pp. 3537–3545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Donadelli, J. N. Orje, C. Capoferri, G. Remuzzi, and Z. M. Ruggeri, “Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood,” Blood, vol. 107, no. 5, pp. 1943–1950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. G. S. Johnson, M. A. Turrentine, and K. H. Kraus, “Canine von Willebrand's disease. A heterogeneous group of bleeding disorders,” Veterinary Clinics of North America. Small Animal Practice, vol. 18, no. 1, pp. 195–229, 1988. View at Scopus
  115. T. C. Nichols, D. A. Bellinger, R. L. Reddick et al., “The roles of von Willebrand factor and factor VIII in arterial thrombosis: studies in canine von Willebrand disease and hemophilia A,” Blood, vol. 81, no. 10, pp. 2644–2651, 1993. View at Scopus
  116. J. D. Sweeney, E. K. Novak, M. Reddington, K. H. Takeuchi, and R. T. Swank, “The RIIIS/J inbred mouse strain as a model for von Willebrand disease,” Blood, vol. 76, no. 11, pp. 2258–2265, 1990. View at Scopus
  117. C. Denis, N. Methia, P. S. Frenette et al., “A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9524–9529, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Benson and W. Dodds, “Autosomal factor VIII deficiency in rabbits:size variations of rabbit factor VIII,” Thrombosis and Haemostasis, vol. 38, p. 380, 1977.
  119. T. W. French, L. E. Fox, J. F. Randolph, and W. J. Dodds, “A bleeding disorder (von Willebrand's disease) in a Himalayan cat,” Journal of the American Veterinary Medical Association, vol. 190, no. 4, pp. 437–439, 1987. View at Scopus
  120. M. F. Prescott, C. H. McBride, J. Hasler-Rapacz, J. Von Linden, and J. Rapacz, “Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B,” American Journal of Pathology, vol. 139, no. 1, pp. 139–147, 1991. View at Scopus
  121. R. G. Gerrity, R. Natarajan, J. L. Nadler, and T. Kimsey, “Diabetes-induced accelerated atherosclerosis in swine,” Diabetes, vol. 50, no. 7, pp. 1654–1665, 2001. View at Scopus
  122. M. E. Rosenfeld, P. Polinsky, R. Virmani, K. Kauser, G. Rubanyi, and S. M. Schwartz, “Advanced atherosclerotic lesions in the innominate artery of the apoE knockout mouse,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 12, pp. 2587–2592, 2000. View at Scopus
  123. F. Calara, M. Silvestre, F. Casanada, N. Yuan, C. Napoli, and W. Palinski, “Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice,” Journal of Pathology, vol. 195, no. 2, pp. 257–263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. J. L. Johnson and C. L. Jackson, “Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse,” Atherosclerosis, vol. 154, no. 2, pp. 399–406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. S. M. Schwartz, Z. S. Galis, M. E. Rosenfeld, and E. Falk, “Plaque rupture in humans and mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 705–713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Badimon, V. Fuster, J. H. Chesebro, and M. K. Dewanjee, “New “ex vivo” radioisotopic method of quantitation of platelet deposition—studies in four animal species,” Thrombosis and Haemostasis, vol. 50, no. 3, pp. 639–644, 1983. View at Scopus
  127. M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, “Correlation of vulnerable coronary plaques to sudden cardiac events. Lessons from a myocardial infarction-prone animal model (the WHHLMI rabbit),” Journal of atherosclerosis and thrombosis, vol. 11, no. 4, pp. 184–189, 2004. View at Scopus
  128. J. Alfon, C. Pueyo Palazon, T. Royo, and L. Badimon, “Effects of statins in thrombosis and aortic lesion development in a dyslipemic rabbit model,” Thrombosis and Haemostasis, vol. 81, no. 5, pp. 822–827, 1999. View at Scopus
  129. J. J. Badimon, L. Badimon, and V. Fuster, “Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit,” Journal of Clinical Investigation, vol. 85, no. 4, pp. 1234–1241, 1990. View at Scopus
  130. L. Badimon, “Atherosclerosis and thrombosis: lessons from animal models,” Thrombosis and Haemostasis, vol. 86, no. 1, pp. 356–365, 2001. View at Scopus
  131. P. Constantinides, J. Booth, and G. Carlson, “Production of advanced cholesterol atherosclerosis in the rabbit,” Archives of Pathology, vol. 70, pp. 712–724, 1960.
  132. B. Ibanez, G. Vilahur, G. Cimmino et al., “Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-IMilano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis,” Journal of the American College of Cardiology, vol. 51, no. 11, pp. 1104–1109, 2008. View at Publisher · View at Google Scholar
  133. G. Cimmino, B. Ibanez, G. Vilahur et al., “Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-IMilano,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9B, pp. 3226–3235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. B. G. Choi, G. Vilahur, M. U. Zafar et al., “Selective estrogen receptor modulation influences atherosclerotic plaque composition in a rabbit menopause model,” Atherosclerosis, vol. 201, no. 1, pp. 76–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. B. G. Choi, G. Vilahur, L. Cardoso et al., “Ovariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathway,” European Journal of Clinical Investigation, vol. 38, no. 4, pp. 211–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. M. T. Johnstone, R. M. Botnar, A. S. Perez et al., “In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 9, pp. 1556–1560, 2001. View at Scopus
  137. R. M. Botnar, A. S. Perez, S. Witte et al., “In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent,” Circulation, vol. 109, no. 16, pp. 2023–2029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. R. W. Wissler and D. Vesselinovitch, Differences between Human and Animal Atherosclerosis, Springer, New York, NY, USA, 1974.
  139. M. Levi, J. Dörffler-Melly, G. J. Johnson, L. Drouet, and L. Badimon, “Usefulness and limitations of animal models of venous thrombosis,” Thrombosis and Haemostasis, vol. 86, no. 5, pp. 1331–1333, 2001. View at Scopus
  140. J. Dörffler-Melly, L. A. Schwarte, C. Ince, and M. Levi, “Mouse models of focal arterial and venous thrombosis,” Basic Research in Cardiology, vol. 95, no. 6, pp. 503–509, 2000. View at Publisher · View at Google Scholar · View at Scopus