About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 379024, 16 pages
http://dx.doi.org/10.1155/2012/379024
Review Article

Molecular Targets Related to Inflammation and Insulin Resistance and Potential Interventions

1Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, 01506-000 São Paulo, SP, Brazil
2Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
3Institute of Biology, University State of Campinas, 13083-970 Campinas, SP, Brazil

Received 6 July 2012; Revised 13 September 2012; Accepted 13 September 2012

Academic Editor: Hartmut Jaeschke

Copyright © 2012 Sandro M. Hirabara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. J. Sun, P. Rothenberg, C. R. Kahn et al., “Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein,” Nature, vol. 352, no. 6330, pp. 73–77, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Burks and M. F. White, “IRS proteins and beta-cell function,” Diabetes, vol. 50, pp. S140–S145, 2001. View at Scopus
  3. S. Durmuş Tekir, P. Ümit, A. Eren Toku, and K. O. Ülgen, “Reconstruction of protein-protein interaction network of insulin signaling in Homo sapiens,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 690925, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Hirayama, H. Tamemoto, H. Yokota et al., “Insulin receptor-related receptor is expressed in pancreatic β-cells and stimulates tyrosine phosphorylation of insulin receptor substrate-1 and- 2,” Diabetes, vol. 48, no. 6, pp. 1237–1244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Paris, C. Bernard-Kargar, J. Vilar, N. Kassis, and A. Ktorza, “Role of glucose in IRS signaling in rat pancreatic islets: specific effects and interplay with insulin,” Experimental Diabesity Research, vol. 5, no. 4, pp. 257–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Thirone, C. Huang, and A. Klip, “Tissue-specific roles of IRS proteins in insulin signaling and glucose transport,” Trends in Endocrinology and Metabolism, vol. 17, no. 2, pp. 72–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Saltiel and C. R. Kahn, “Insulin signalling and the regulation of glucose and lipid metabolism,” Nature, vol. 414, no. 6865, pp. 799–806, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Furtado, R. Somwar, G. Sweeney, W. Niu, and A. Klip, “Activation of the glucose transporter GLUT4 by insulin,” Biochemistry and Cell Biology, vol. 80, no. 5, pp. 569–578, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Chang, S. H. Chiang, and A. R. Saltiel, “Insulin signaling and the regulation of glucose transport,” Molecular Medicine, vol. 10, no. 7–12, pp. 65–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. F. S. L. Thong, C. B. Dugani, and A. Klip, “Turning signals on and off: GLUT4 traffic in the insulin-signaling highway,” Physiology, no. 4, pp. 271–284, 2005. View at Scopus
  11. M. D. Sharma, A. J. Garber, and J. A. Farmer, “Role of insulin signaling in maintaining energy homeostasis,” Endocrine Practice, vol. 14, no. 3, pp. 373–380, 2008. View at Scopus
  12. C. A. Baumann, V. Ribon, M. Kanzaki et al., “CAP defines a second signalling pathway required for insulin-stimulated glucose transport,” Nature, vol. 407, no. 6801, pp. 202–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Liu, A. Kimura, C. A. Baumann, and A. R. Saltiel, “APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes,” Molecular and Cellular Biology, vol. 22, no. 11, pp. 3599–3609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Hu, J. Liu, R. Ghirlando, A. R. Saltiel, and S. R. Hubbard, “Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor,” Molecular Cell, vol. 12, no. 6, pp. 1379–1389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Mitra, X. Zheng, and M. P. Czech, “RNAi-based analysis of CAP, Cbl, and CrkII function in the regulation of GLUT4 by insulin,” The Journal of Biological Chemistry, vol. 279, no. 36, pp. 37431–37435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Liu, S. M. DeYoung, M. Zhang, L. H. Dold, and A. R. Saltiel, “The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes,” The Journal of Biological Chemistry, vol. 280, no. 16, pp. 16125–16134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. E. Egan, B. W. Giddings, M. W. Brooks, L. Buday, A. M. Sizeland, and R. A. Weinberg, “Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation,” Nature, vol. 362, no. 6424, pp. 45–51, 1993. View at Scopus
  18. P. Chardin, J. H. Camonis, N. W. Gale et al., “Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2,” Science, vol. 260, no. 5112, pp. 1338–1343, 1993. View at Scopus
  19. E. Y. Skolnik, A. Batzer, N. Li et al., “The function of GRB2 in linking the insulin receptor to Ras signaling pathways,” Science, vol. 260, no. 5116, pp. 1953–1955, 1993. View at Scopus
  20. V. Baron and E. Van Obberghen, “Mechanism of insulin action,” Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, vol. 189, no. 1, pp. 25–41, 1995. View at Scopus
  21. M. Combettes-Souverain and T. Issad, “Molecular basis of insulin action,” Diabetes and Metabolism, vol. 24, no. 6, pp. 477–489, 1998. View at Scopus
  22. Y. Yano, Y. Sumida, C. F. Benzing, F. W. Robinson, and T. Kono, “Primary sites of actions of staurosporine and H-7 in the cascade of insulin action to glucose transport in rat adipocytes,” Biochimica et Biophysica Acta, vol. 1176, no. 3, pp. 327–332, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Sweeney, R. Somwar, T. Ramlal, A. Volchuk, A. Ueyama, and A. Klip, “An inhibitor of p38 mitogen-activated protein kinase prevents insulin- stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes,” The Journal of Biological Chemistry, vol. 274, no. 15, pp. 10071–10078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Somwar, D. Y. Kim, G. Sweeney et al., “GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase,” Biochemical Journal, vol. 359, no. 3, pp. 639–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. F. H. Nystrom and M. Quon, “Insulin signalling: metabolic pathways and mechanisms for specificity,” Cellular Signalling, vol. 11, no. 8, pp. 563–574, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Liu and C. M. Rondinone, “JNK: bridging the insulin signaling and inflammatory pathway,” Current Opinion in Investigational Drugs, vol. 6, no. 10, pp. 979–987, 2005. View at Scopus
  27. S. Prudente, E. Morini, and V. Trischitta, “Insulin signaling regulating genes: effect on T2DM and cardiovascular risk,” Nature Reviews Endocrinology, vol. 5, no. 12, pp. 682–693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling, and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Abdul-Ghani and R. A. Defronzo, “Pathogenesis of insulin resistance in skeletal muscle,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 476279, 19 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kontrogianni-Konstantopoulos, G. Benian, and H. Granzier, “Advances in muscle physiology and pathophysiology,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 780417, 1 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Di Carlo, P. Picone, R. Carrotta, D. Giacomazza, and P. L. San Biagio, “Insulin promotes survival of amyloid-beta oligomers neuroblastoma damaged cells via caspase 9 inhibition and Hsp70 upregulation,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 147835, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Peppa, C. Koliaki, P. Nikolopoulos, and S. A. Raptis, “Skeletal muscle insulin resistance in endocrine disease,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 527850, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kontrogianni-Konstantopoulos, G. Benian, and H. Granzier, “Advances in muscle physiology and pathophysiology 2011,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 930836, 1 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Hirabara, L. R. Silveira, F. Abdulkader, C. R. O. Carvalho, J. Procopio, and R. Curi, “Time-dependent effects of fatty acids on skeletal muscle metabolism,” Journal of Cellular Physiology, vol. 210, no. 1, pp. 7–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. R. Silveira, J. Fiamoncini, S. M. Hirabara et al., “Updating the effects of fatty acids on skeletal muscle,” Journal of Cellular Physiology, vol. 217, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Hirabara, R. Curi, and P. Maechler, “Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells,” Journal of Cellular Physiology, vol. 222, no. 1, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. R. Martins, R. T. Nachbar, R. Gorjao et al., “Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function,” Lipids in Health and Disease, vol. 11, article 30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. G. I. Shulman, “Cellular mechanisms of insulin resistance,” The Journal of Clinical Investigation, vol. 106, no. 2, pp. 171–176, 2000. View at Scopus
  39. M. Roden, “How free fatty acids inhibit glucose utilization in human skeletal muscle,” News in Physiological Sciences, vol. 19, no. 3, pp. 92–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Yu, Y. Chen, G. W. Cline et al., “Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle,” The Journal of Biological Chemistry, vol. 277, no. 52, pp. 50230–50236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Newsholme, E. P. Haber, S. M. Hirabara et al., “Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity,” Journal of Physiology, vol. 583, no. 1, pp. 9–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, “The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus,” The Lancet, vol. 281, no. 7285, pp. 785–789, 1963. View at Scopus
  43. M. Roden, T. B. Price, G. Perseghin et al., “Mechanism of free fatty acid-induced insulin resistance in humans,” The Journal of Clinical Investigation, vol. 97, no. 12, pp. 2859–2865, 1996. View at Scopus
  44. M. E. Griffin, M. J. Marcucci, G. W. Cline et al., “Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade,” Diabetes, vol. 48, no. 6, pp. 1270–1274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Massao Hirabara, C. R. De Oliveira Carvalho, J. R. Mendonça, E. Piltcher Haber, L. C. Fernandes, and R. Curi, “Palmitate acutely raises glycogen synthesis in rat soleus muscle by a mechanism that requires its metabolization (Randle cycle),” FEBS Letters, vol. 541, no. 1–3, pp. 109–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Carvalho-Filho, M. Ueno, S. M. Hirabara et al., “S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance,” Diabetes, vol. 54, no. 4, pp. 959–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Brehm, M. Krssak, A. I. Schmid, P. Nowotny, W. Waldhäusl, and M. Roden, “Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle,” Diabetes, vol. 55, no. 1, pp. 136–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Lenoir, K. Flosseau, F. X. Ma et al., “Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9,” Diabetes, vol. 60, no. 11, pp. 2861–2871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Rajendran, R. Garva, M. Krstic-Demonacos, and C. Demonacos, “Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 368276, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Murata, R. Thanan, N. Ma, and S. Kawanishi, “Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 623019, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Bashan, J. Kovsan, I. Kachko, H. Ovadia, and A. Rudich, “Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species,” Physiological Reviews, vol. 89, no. 1, pp. 27–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Zhang, S. Haraguchi, T. Koda, K. Hashimoto, and A. Nakagawara, “Muscle atrophy and motor neuron degeneration in human NEDL1 transgenic mice,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 831092, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. L. Evans, J. J. Lin, and I. D. Goldfine, “Novel approach to treat insulin resistance, type 2 diabetes, and the metabolic syndrome: simultaneous activation of PPARalpha, PPARgamma, and PPARdelta,” Current Diabetes Reviews, vol. 1, no. 3, pp. 299–307, 2005. View at Scopus
  54. E. J. Henriksen, M. K. Diamond-Stanic, and E. M. Marchionne, “Oxidative stress and the etiology of insulin resistance and type 2 diabetes,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 993–999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. H. Lim, J. I. Lee, Y. H. Suh, W. Kim, J. H. Song, and M. H. Jung, “Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells,” Diabetologia, vol. 49, no. 8, pp. 1924–1936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. W. X. Guo, Q. N. Pye, K. S. Williamson et al., “Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes,” Free Radical Biology and Medicine, vol. 39, no. 5, pp. 641–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. P. Wallace, B. Johnson, J. Padilla, and K. Mather, “Postprandial lipaemia, oxidative stress and endothelial function: a review,” International Journal of Clinical Practice, vol. 64, no. 3, pp. 389–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Medzhitov, “Origin and physiological roles of inflammation,” Nature, vol. 454, no. 7203, pp. 428–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. C. N. Lumeng and A. R. Saltiel, “Inflammatory links between obesity and metabolic disease,” The Journal of Clinical Investigation, vol. 121, no. 6, pp. 2111–2117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Sun, C. M. Kusminski, and P. E. Scherer, “Adipose tissue remodeling and obesity,” The Journal of Clinical Investigation, vol. 121, no. 6, pp. 2094–2101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Mothe-Satney, C. Filloux, H. Amghar et al., “Adipocytes secrete leukotrienes: contribution to obesity-associated inflammation and insulin resistance in mice,” Diabetes, vol. 61, no. 9, pp. 2311–2319, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Kurokaw, H. Nagano, O. Ohara et al., “Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12072–12077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Lanthier, O. Molendi-Coste, Y. Horsmans, N. Van Rooijen, P. D. Cani, and I. A. Leclercq, “Kupffer cell activation is a causal factor for hepatic insulin resistance,” American Journal of Physiology, vol. 298, no. 1, pp. G107–G116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Nishimura, I. Manabe, M. Nagasaki et al., “CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity,” Nature Medicine, vol. 15, no. 8, pp. 914–920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Feuerer, L. Herrero, D. Cipolletta et al., “Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters,” Nature Medicine, vol. 15, no. 8, pp. 930–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. V. Z. Rocha, E. J. Folco, G. Sukhova et al., “Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity,” Circulation Research, vol. 103, no. 5, pp. 467–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Bertola, T. Ciucci, D. Rousseau et al., “Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients,” Diabetes, vol. 61, no. 9, pp. 2238–2247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. H. M. Davis, D. C. Carpenter, J. M. Stahl, W. Zhang, W. P. Hynicka, and D. E. Griswold, “Human granulocyte CD11b expression as a pharmacodynamic biomarker of inflammation,” Journal of Immunological Methods, vol. 240, no. 1-2, pp. 125–132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Scopus
  71. T. Haruta, T. Uno, J. Kawahara et al., “A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1,” Molecular Endocrinology, vol. 14, no. 6, pp. 783–794, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Gual, Y. Le Marchand-Brustel, and J. F. Tanti, “Positive and negative regulation of insulin signaling through IRS-1 phosphorylation,” Biochimie, vol. 87, no. 1, pp. 99–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Hiratani, T. Haruta, A. Tani, J. Kawahara, I. Usui, and M. Kobayashi, “Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1,” Biochemical and Biophysical Research Communications, vol. 335, no. 3, pp. 836–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. D. M. L. Tsukumo, M. A. Carvalho-Filho, J. B. C. Carvalheira et al., “Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance,” Diabetes, vol. 56, no. 8, pp. 1986–1998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Wu, Y. Liu, X. Lv, X. Miao, Y. Sun, and W. Yu, “Small interference RNA targeting TLR4 gene effectively attenuates pulmonary inflammation in a rat model,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 406435, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Kaneto, Y. Nakatani, D. Kawamori et al., “Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 782–793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Solinas, W. Naugler, F. Galimi, M. S. Lee, and M. Karin, “Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 44, pp. 16454–16459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Håversen, K. N. Danielsson, L. Fogelstrand, and O. Wiklund, “Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages,” Atherosclerosis, vol. 202, no. 2, pp. 382–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Wen, D. Gris, Y. Lei et al., “Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling,” Nature Immunology, vol. 12, no. 5, pp. 408–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. D. K. Coletta and L. J. Mandarino, “Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria,” vol. 301, no. 5, pp. E749–E755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. R. C. Bunn, G. E. Cockrell, Y. Ou, K. M. Thrailkill, C. K. Lumpkin, and J. L. Fowlkes, “Palmitate and insulin synergistically induce IL-6 expression in human monocytes,” Cardiovascular Diabetology, vol. 9, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Ji, X. Chen, C. Gao et al., “IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes,” Journal of Bioenergetics and Biomembranes, vol. 43, no. 4, pp. 367–375, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Yasuhara, Y. Miyamoto, T. Akaike et al., “Interleukin-1β induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner,” Biochemical Journal, vol. 389, no. 2, pp. 315–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Ofei, S. Hurel, J. Newkirk, M. Sopwith, and R. Taylor, “Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM,” Diabetes, vol. 45, no. 3, pp. 881–885, 1996. View at Scopus
  86. L. E. Bernstein, J. Berry, S. Kim, B. Canavan, and S. K. Grinspoon, “Effects of etanercept in patients with the metabolic syndrome,” Archives of Internal Medicine, vol. 166, no. 8, pp. 902–908, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Dominguez, H. Storgaard, C. Rask-Madsen et al., “Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes,” Journal of Vascular Research, vol. 42, no. 6, pp. 517–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Paquot, M. J. Castillo, P. J. Lefèbvre, and A. J. Scheen, “No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1316–1319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. T. C. Wascher, J. H. N. Lindeman, H. Sourij, T. Kooistra, G. Pacini, and M. Roden, “Chronic TNF-α neutralization does not improve insulin resistance or endothelial function in “healthy” men with metabolic syndrome,” Molecular Medicine, vol. 17, no. 3-4, pp. 189–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. M. A. Gonzalez-Gay, J. M. De Matias, C. Gonzalez-Juanatey et al., “Anti-tumor necrosis factor-α blockade improves insulin resistance in patients with rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 24, no. 1, pp. 83–86, 2006. View at Scopus
  91. M. A. Gonzalez-Gay, C. Gonzalez-Juanatey, T. R. Vazquez-Rodriguez, J. A. Miranda-Filloy, and J. Llorca, “Insulin resistance in rheumatoid arthritis: the impact of the anti-TNF-α therapy: annals of the New York Academy of Sciences,” Annals of the New York Academy of Sciences, vol. 1193, pp. 153–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Seriolo, S. Paolino, C. Ferrone, and M. Cutolo, “Impact of long-term anti-TNF-α treatment on insulin resistance in patients with rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 26, no. 1, article 159, 2008. View at Scopus
  93. L. S. Tam, B. Tomlinson, T. T. Chu, T. K. Li, and E. K. Li, “Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis,” Clinical Rheumatology, vol. 26, no. 9, pp. 1495–1498, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. J. A. Miranda-Filloy, J. Llorca, B. Carnero-Lopez, C. Gonzalez-Juanatey, R. Blanco, and M. A. Gonzalez-Gay, “TNF-alpha antagonist therapy improves insulin sensitivity in non-diabetic ankylosing spondylitis patients,” Clinical and Experimental Rheumatology. In press.
  95. I. Stagakis, G. Bertsias, S. Karvounaris et al., “Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance,” Arthritis Research and Therapy, vol. 14, no. 3, article 141, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. P. M. Ridker, T. Thuren, A. Zalewski, and P. Libby, “Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and Design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS),” American Heart Journal, vol. 162, no. 4, pp. 597–605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Cho, S. C. Black, D. Looper et al., “Pharmacological characterization of a small molecule inhibitor of c-Jun kinase,” American Journal of Physiology, vol. 295, no. 5, pp. E1142–E1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. J. L. Stebbins, S. K. De, T. Machleidt et al., “Identification of a new JNK inhibitor targeting the JNK-JIP interaction site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16809–16813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. J. L. Stebbins, S. K. De, P. Pavlickova et al., “Design and characterization of a potent and selective dual ATP- and substrate-competitive subnanomolar bidentate c-Jun N-terminal kinase (JNK) inhibitor,” Journal of Medicinal Chemistry, vol. 54, no. 18, pp. 6206–6214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Feng, W. Wang, J. Liu, and Y. Liu, “β-Arrestins: multifunctional signaling adaptors in type 2 diabetes,” Molecular Biology Reports, vol. 38, no. 4, pp. 2517–2528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Mayor, E. Lucas, M. Jurado-Pueyo et al., “G Protein-coupled receptor kinase 2 (GRK2): a novel modulator of insulin resistance,” Archives of Physiology and Biochemistry, vol. 117, no. 3, pp. 125–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. M. A. R. Vinolo, S. M. Hirabara, and R. Curi, “G-protein-coupled receptors as fat sensors,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 15, no. 2, pp. 112–116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Tuo, D. D. Feng, D.-F. Wang, J. Sun, S.-B. Li, and C. Chen, “Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors,” Clinical and Experimental Pharmacology and Physiology, vol. 39, no. 5, pp. 423–428, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. Z. L. Chu, R. M. Jones, H. He et al., “A role for β-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release,” Endocrinology, vol. 148, no. 6, pp. 2601–2609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Edfalk, P. Steneberg, and H. Edlund, “Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion,” Diabetes, vol. 57, no. 9, pp. 2280–2287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Hirasawa, K. Tsumaya, T. Awaji et al., “Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120,” Nature Medicine, vol. 11, no. 1, pp. 90–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. K. B. Hansen, M. M. Rosenkilde, F. K. Knop et al., “2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. E1409–E1417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. L. M. Lauffer, R. Iakoubov, and P. L. Brubaker, “GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell,” Diabetes, vol. 58, no. 5, pp. 1058–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Tolhurst, H. Heffron, Y. S. Lam et al., “Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2,” Diabetes, vol. 61, no. 2, pp. 364–371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Y. Oh, S. Talukdar, E. J. Bae et al., “GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects,” Cell, vol. 142, no. 5, pp. 687–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. A. Glozak, N. Sengupta, X. Zhang, and E. Seto, “Acetylation and deacetylation of non-histone proteins,” Gene, vol. 363, no. 1-2, pp. 15–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. A. M. Grabiec, P. P. Tak, and K. A. Reedquist, “Function of histone deacetylase inhibitors in inflammation,” Critical Reviews in Immunology, vol. 31, no. 3, pp. 233–263, 2011. View at Scopus
  113. D. P. Christensen, M. Dahllöf, M. Lundh et al., “Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus,” Molecular Medicine, vol. 17, no. 5-6, pp. 378–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. E. C. Lewis, L. Blaabjerg, J. StØrling et al., “The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet β cells in vivo and in vitro,” Molecular Medicine, vol. 17, no. 5-6, pp. 369–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Gao, J. Yin, J. Zhang et al., “Butyrate improves insulin sensitivity and increases energy expenditure in mice,” Diabetes, vol. 58, no. 7, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. M. A. R. Vinolo, H. G. Rodrigues, W. T. Festuccia et al., “Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice,” American Journal of Physiology, vol. 303, no. 2, pp. E272–E282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Li, Z. Gao, J. Zhang et al., “Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3,” Diabetes, vol. 61, no. 4, pp. 797–806, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Winkler, V. Benz, M. Clemenz et al., “Histone deacetylase 6 (HDAC6) is an essential modifier of glucocorticoid-induced hepatic gluconeogenesis,” Diabetes, vol. 61, no. 2, pp. 513–523, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. S. J. Saouaf, B. Li, G. Zhang et al., “Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis,” Experimental and Molecular Pathology, vol. 87, no. 2, pp. 99–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Tao, E. F. De Zoeten, E. Özkaynak et al., “Deacetylase inhibition promotes the generation and function of regulatory T cells,” Nature Medicine, vol. 13, no. 11, pp. 1299–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. F. Chiarelli and D. Di Marzio, “Peroxisome proliferator-activated receptor-γ agonists and diabetes: current evidence and future perspectives,” Vascular Health and Risk Management, vol. 4, no. 2, pp. 297–304, 2008. View at Scopus
  122. N. Guo, C. F. Woeller, S. E. Feldon, and R. P. Phipps, “Peroxisome proliferator-activated receptor γ ligands inhibit transforming growth factor-β-induced, hyaluronan-dependent, T cell adhesion to orbital fibroblasts,” The Journal of Biological Chemistry, vol. 286, no. 21, pp. 18856–18867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Hamblin, L. Chang, H. Zhang, K. Yang, J. Zhang, and Y. E. Chen, “Vascular smooth muscle cell peroxisome proliferator-activated receptor-γ mediates pioglitazone-reduced vascular lesion formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 2, pp. 352–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Foryst-Ludwig, M. Hartge, M. Clemenz et al., “PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice,” Cardiovascular Diabetology, vol. 9, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. L. Ye, Z. Zhou, H. J. Zou et al., “Discovery of novel dual functional agent as PPARγ agonist and 11β-HSD1 inhibitor for the treatment of diabetes,” Bioorganic and Medicinal Chemistry, vol. 17, no. 15, pp. 5722–5732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. F. Zhang, X. Yang, Y. J. Zhang et al., “Peroxisome proliferator-activated receptor-gamma is expressed by rat peritoneal mesothelial cells: its potential role in peritoneal cavity local defense,” American Journal of Nephrology, vol. 26, no. 6, pp. 602–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Suzawa, I. Takada, J. Yanagisawa et al., “Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade,” Nature Cell Biology, vol. 5, no. 3, pp. 224–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. C. N. Lumeng, S. M. DeYoung, J. L. Bodzin, and A. R. Saltiel, “Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity,” Diabetes, vol. 56, no. 1, pp. 16–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. H. Tilg and A. R. Moschen, “Inflammatory mechanisms in the regulation of insulin resistance,” Molecular Medicine, vol. 14, no. 3-4, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. D. Cipolletta, M. Feuerer, A. Li et al., “PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue T reg cells,” Nature, vol. 486, no. 7404, pp. 549–553, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. F. Zheng and Y. Guan, “Thiazolidinediones: a novel class of drugs for the prevention of diabetic nephropathy?” Kidney International, vol. 72, no. 11, pp. 1301–1303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Feuerer, Y. Shen, D. R. Littman, C. Benoist, and D. Mathis, “How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets,” Immunity, vol. 31, no. 4, pp. 654–664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Wu, Y. Bi, K. Sun, and C. Wang, “IL-10-producing type 1 regulatory T cells and allergy,” Cellular & Molecular Immunology, vol. 4, no. 4, pp. 269–275, 2007. View at Scopus
  136. V. De Rosa, C. Procaccini, G. Calì et al., “A key role of leptin in the control of regulatory T cell proliferation,” Immunity, vol. 26, no. 2, pp. 241–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Aderem and R. J. Ulevitch, “Toll-like receptors in the induction of the innate immune response,” Nature, vol. 406, no. 6797, pp. 782–787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  138. D. Shi, J. Das, and G. Das, “Inflammatory bowel disease requires the interplay between innate and adaptive immune signals,” Cell Research, vol. 16, no. 1, pp. 70–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. M. R. Dasu, S. Devaraj, S. Park, and I. Jialal, “Increased Toll-Like Receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects,” Diabetes Care, vol. 33, no. 4, pp. 861–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. K. Mohammad, M. Morran, B. Slotterbeck et al., “Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse,” International Immunology, vol. 18, no. 7, pp. 1101–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. H. S. Kim, M. S. Han, K. W. Chung et al., “Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes,” Immunity, vol. 27, no. 2, pp. 321–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Kopp, C. Buechler, M. Bala, M. Neumeier, J. Schölmerich, and A. Schäffler, “Toll-like receptor ligands cause proinflammatory and prodiabetic activation of adipocytes via phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase but not interferon regulatory factor-3,” Endocrinology, vol. 151, no. 3, pp. 1097–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. J. E. Davis, N. K. Gabler, J. Walker-Daniels, and M. E. Spurlock, “Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat,” Obesity, vol. 16, no. 6, pp. 1248–1255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. C. K. Glass and J. M. Olefsky, “Inflammation and lipid signaling in the etiology of insulin resistance,” Cell Metabolism, vol. 15, no. 5, pp. 635–645, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. C. N. Serhan, S. Hong, K. Gronert et al., “Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals,” Journal of Experimental Medicine, vol. 196, no. 8, pp. 1025–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. C. B. Clish, J. A. O'Brien, K. Gronert, G. L. Stahl, N. A. Petasis, and C. N. Serhan, “Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8247–8252, 1999. View at Publisher · View at Google Scholar · View at Scopus
  147. P. K. Mukherjee, V. L. Marcheselli, S. Barreiro, J. Hu, D. Bok, and N. G. Bazan, “Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13152–13157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. C. N. Serhan, K. Gotlinger, S. Hong et al., “Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes,” Journal of Immunology, vol. 176, no. 3, pp. 1848–1859, 2006. View at Scopus
  149. C. Godson and H. R. Brady, “Lipoxins: novel anti-inflammatory therapeutics?” Current Opinion in Investigational Drugs, vol. 1, no. 3, pp. 380–385, 2000. View at Scopus
  150. A. González-Périz, R. Horrillo, N. Ferré et al., “Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins,” The FASEB Journal, vol. 23, no. 6, pp. 1946–1957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. P. J. White, M. Arita, R. Taguchi, J. X. Kang, and A. Marette, “Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice,” Diabetes, vol. 59, no. 12, pp. 3066–3073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Horrillo, A. González-Périz, M. Martínez-Clemente et al., “5-Lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity,” Journal of Immunology, vol. 184, no. 7, pp. 3978–3987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Titos, B. Rius, A. González-Périz et al., “Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype,” Journal of Immunology, vol. 187, no. 10, pp. 5408–5418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Hellmann, Y. Tang, M. Kosuri, A. Bhatnagar, and M. Spite, “Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice,” The FASEB Journal, vol. 25, no. 7, pp. 2399–2407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. V. Ambros, “The functions of animal microRNAs,” Nature, vol. 431, no. 7006, pp. 350–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. A. M. Yu, “Role of microRNAs in the regulation of drug metabolism and disposition,” Expert Opinion on Drug Metabolism and Toxicology, vol. 5, no. 12, pp. 1513–1528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. I. Bentwich, A. Avniel, Y. Karov et al., “Identification of hundreds of conserved and nonconserved human microRNAs,” Nature Genetics, vol. 37, no. 7, pp. 766–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. E. M. Small and E. N. Olson, “Pervasive roles of microRNAs in cardiovascular biology,” Nature, vol. 469, no. 7330, pp. 336–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. K. J. Moore, K. J. Rayner, Y. Suárez, and C. Fernández-Hernando, “The role of MicroRNAs in cholesterol efflux and hepatic lipid metabolism,” Annual Review of Nutrition, vol. 31, pp. 49–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. C. Underbayev, S. Kasar, Y. Yuan, and E. Raveche, “MicroRNAs and induced pluripotent stem cells for human disease mouse modeling,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 758169, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  164. J. Ju, “MiRNAs as biomarkers in colorectal cancer diagnosis and prognosis,” Bioanalysis, vol. 2, no. 5, pp. 901–906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. H. Schwarzenbach, D. S. B. Hoon, and K. Pantel, “Cell-free nucleic acids as biomarkers in cancer patients,” Nature Reviews Cancer, vol. 11, no. 6, pp. 426–437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. H. Xie, B. Lim, and H. F. Lodish, “MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity,” Diabetes, vol. 58, no. 5, pp. 1050–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. M. Hulsmans, D. De Keyzer, and P. Holvoet, “MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis,” The FASEB Journal, vol. 25, no. 8, pp. 2515–2527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. R. J. A. Frost and E. N. Olson, “Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 21075–21080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Harmancey, C. R. Wilson, and H. Taegtmeyer, “Adaptation and maladaptation of the heart in obesity,” Hypertension, vol. 52, no. 2, pp. 181–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. C. E. Grueter, E. Van Rooij, B. A. Johnson et al., “A cardiac MicroRNA governs systemic energy homeostasis by regulation of MED13,” Cell, vol. 149, no. 3, pp. 671–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  171. S. Han, C. P. Liang, T. DeVries-Seimon et al., “Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions,” Cell Metabolism, vol. 3, no. 4, pp. 257–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. I. Tabas, A. Tall, and D. Accili, “The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression,” Circulation Research, vol. 106, no. 1, pp. 58–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Hulsmans, E. van Dooren, C. Mathieu, and P. Holvoet, “Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin,” PLoS ONE, vol. 7, no. 2, Article ID e32794, 2012. View at Publisher · View at Google Scholar · View at Scopus
  174. N. H. Foley and L. A. O'Neill, “miR-107: a Toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes,” Journal of Leukocyte Biology, vol. 92, no. 3, pp. 521–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  175. E. J. Hennessy, F. J. Sheedy, D. Santamaria, M. Barbacid, and L. A. J. O'Neill, “Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6,” The Journal of Biological Chemistry, vol. 286, no. 29, pp. 25531–25539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. X. Tang, L. Muniappan, G. Tang, and S. Özcan, “Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription,” RNA, vol. 15, no. 2, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. B. M. Herrera, H. E. Lockstone, J. M. Taylor et al., “Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes,” Diabetologia, vol. 53, no. 6, pp. 1099–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Trajkovski, J. Hausser, J. Soutschek et al., “MicroRNAs 103 and 107 regulate insulin sensitivity,” Nature, vol. 474, no. 7353, pp. 649–653, 2011. View at Publisher · View at Google Scholar · View at Scopus