About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 902803, 9 pages
http://dx.doi.org/10.1155/2012/902803
Research Article

Proteomic Analysis of Trypanosoma cruzi Epimastigotes Subjected to Heat Shock

1Laboratorio de Estudios Sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, 04510 México, DF, Mexico
2Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, 62100 Cuernavaca, MOR, Mexico

Received 1 June 2011; Revised 31 August 2011; Accepted 8 September 2011

Academic Editor: Jorge Morales-Montor

Copyright © 2012 Deyanira Pérez-Morales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Expert Committee, “Control of Chagas disease,” Tech. Rep. 905, World Health Organization—Technical Report Series, 2002.
  2. J. Jannin and R. Salvatella, “Quantitative estimates of Chagas disease in the Americas,” Tech. Rep. OPS/HDM/CD/425-06, Pan American Health Organization, Washington, DC, USA, 2006.
  3. J. C. P. Dias, “Epidemiology of Chagas disease,” in Chagas Disease (American Trypanosomiasis): Its Impact on Transfusion and Clinical Medicine, S. Wendel, Z. Brener, M. E. Camargo, and A. Rassi, Eds., ISBT Brazil ’92, Sao Paulo, Brazil, 1992.
  4. J. M. Requena, A. Jimenez-Ruiz, M. Soto et al., “Regulation of hsp70 expression in Trypanosoma cruzi by temperature and growth phase,” Molecular and Biochemical Parasitology, vol. 53, no. 1-2, pp. 201–212, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. S. E. B. Graefe, M. Wiesgigl, I. Gaworski, A. Macdonald, and J. Clos, “Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation,” Eukaryotic Cell, vol. 1, no. 6, pp. 936–943, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Zilberstein and M. Shapira, “The role of pH and temperature in the development of Leishmania parasites,” Annual Review of Microbiology, vol. 48, pp. 449–470, 1994. View at Scopus
  7. B. F. Hall, “Trypanosoma cruzi: mechanisms for entry into host cells,” Seminars in Cell Biology, vol. 4, no. 5, pp. 323–333, 1993. View at Scopus
  8. J. K. Finzi, C. W. M. Chiavegatto, K. F. Corat et al., “Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide,” Molecular and Biochemical Parasitology, vol. 133, no. 1, pp. 37–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Azambuja, C. B. Mello, and E. S. Garcia, “Immunity to Rhodnius prolixus: inducible peptides against bacteria and trypanosomes,” in Host Regulated Developmental Mechanisms in Vector Arthropods, D. Borovsky and A. Spielman, Eds., Vero Beach, Fla, USA, 1989.
  10. C. L. Olson, K. C. Nadeau, M. A. Sullivan et al., “Molecular and biochemical comparison of the 70-kDa heat shock proteins of Trypanosoma cruzi,” Journal of Biological Chemistry, vol. 269, no. 5, pp. 3868–3874, 1994. View at Scopus
  11. Z. Prohászka and G. Füst, “Immunological aspects of heat-shock proteins—the optimum stress of life,” Molecular Immunology, vol. 41, no. 1, pp. 29–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Clayton and M. Shapira, “Post-transcriptional regulation of gene expression in trypanosomes and leishmanias,” Molecular and Biochemical Parasitology, vol. 156, no. 2, pp. 93–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. V. López-Olmos, N. Pérez-Nasser, D. Piñero, E. Ortega, R. Hernandez, and B. Espinoza, “Biological characterization and genetic diversity of Mexican isolates of Trypanosoma cruzi,” Acta Tropica, vol. 69, no. 3, pp. 239–254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. F. Bosseno, C. Barnabé, E. M. Gastélum et al., “Predominance of Trypanosoma cruzi lineage I in Mexico,” Journal of Clinical Microbiology, vol. 40, no. 2, pp. 627–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Berkelman and T. Stenstedt, 2-D Electrophoresis Using Immobilized pH Gradients. Principles and Methods, Amersham Pharmacia Biotech Inc., 1998.
  16. E. F. de Carvalho, F. T. de Castro, E. Rondinelli, and J. F. Carvalho, “Physiological aspects of Trypanosoma cruzi gene regulation during heat-shock,” Biological Research, vol. 27, no. 3-4, pp. 225–231, 1994. View at Scopus
  17. M. Fernandes, R. Silva, S. C. Rössle, P. M. Bisch, E. Rondinelli, and T. P. Ürményi, “Gene characterization and predicted protein structure of the mitochondrial chaperonin HSP10 of Trypanosoma cruzi,” Gene, vol. 349, pp. 135–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Pérez-Morales, P. Ostoa-Saloma, and B. Espinoza, “Trypanosoma cruzi SHSP16: characterization of an α-crystallin small heat shock protein,” Experimental Parasitology, vol. 123, no. 2, pp. 182–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Majoul, E. Bancel, E. Triboï, J. B. Hamida, and G. Branlard, “Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction,” Proteomics, vol. 4, no. 2, pp. 505–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. K. Schmid, M. S. Lipton, H. Mottaz, M. E. Monroe, R. D. Smith, and M. E. Lidstrom, “Global whole-cell FTICR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium Deinococcus radiodurans,” Journal of Proteome Research, vol. 4, no. 3, pp. 709–718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. R. Slabas, I. Suzuki, N. Murata, W. J. Simon, and J. J. Hall, “Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene,” Proteomics, vol. 6, no. 3, pp. 845–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Jungblut, H. G. Holzhütter, R. Apweiler, and H. Schlüter, “The speciation of the proteome,” Chemistry Central Journal, vol. 2, no. 1, p. 16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Espinoza, T. Rico, S. Sosa et al., “Mexican Trypanosoma cruzi I strains with different degrees of virulence induce diverse humoral and cellular immune responses in a murine experimental infection model,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 890672, 10 pages, 2010. View at Publisher · View at Google Scholar
  24. A. Parodi-Talice, R. Durán, N. Arrambide et al., “Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi,” International Journal for Parasitology, vol. 34, no. 8, pp. 881–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Paba, J. M. Santana, A. R. L. Teixeira, W. Fontes, M. V. Sousa, and C. A. O. Ricart, “Proteomic analysis of the human pathogen Trypanosoma cruzi,” Proteomics, vol. 4, no. 4, pp. 1052–1059, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. D. J. C. Pappin, P. Hojrup, and A. J. Bleasby, “Rapid identification of proteins by peptide-mass fingerprinting,” Current Biology, vol. 3, no. 6, pp. 327–332, 1993. View at Scopus
  27. A. Ruepp, A. Zollner, D. Maier et al., “The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes,” Nucleic Acids Research, vol. 32, no. 18, pp. 5539–5545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Nowicki and J. J. Cazzulo, “Aromatic amino acid catabolism in trypanosomatids,” Comparative Biochemistry and Physiology A, vol. 151, no. 3, pp. 381–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. M. Martins, C. Covarrubias, R. G. Rojas, A. M. Silber, and N. Yoshida, “Use of L-proline and ATP production by Trypanosoma cruzi metacyclic forms as requirements for host cell invasion,” Infection and Immunity, vol. 77, no. 7, pp. 3023–3032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. Lee, S. M. Bae, T. S. Kim, and K. J. Lee, “Proteomic analysis of protein expression in Streptococcus pneumoniae in response to temperature shift,” Journal of Microbiology, vol. 44, no. 4, pp. 375–382, 2006. View at Scopus
  31. M. E. Konkel and K. Tilly, “Temperature-regulated expression of bacterial virulence genes,” Microbes and Infection, vol. 2, no. 2, pp. 157–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu et al., “The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease,” Science, vol. 309, no. 5733, pp. 409–435, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. L. M. de Pablos, G. G. González, J. S. Parada, et al., “Differential expression and characterization of a member of the mucin-associated surface proteins (MASP) family secreted by Trypanosoma cruzi,” Infection and Immunity, vol. 79, pp. 3993–4001, 2011. View at Publisher · View at Google Scholar
  34. E. M. Cordero, L. G. Gentil, G. Crisante et al., “Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus,” Acta Tropica, vol. 105, no. 1, pp. 87–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Alcina, A. Urzainqui, and L. Carrasco, “The heat-shock response in Trypanosoma cruzi,” European Journal of Biochemistry, vol. 172, no. 1, pp. 121–127, 1988. View at Scopus
  36. H. Sies, “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, no. 2, pp. 213–219, 1993. View at Scopus
  37. R. L. Krauth-Siegel, S. K. Meiering, and H. Schmidt, “The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania,” Biological Chemistry, vol. 384, no. 4, pp. 539–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. F. Davidson, B. Whyte, P. H. Bissinger, and R. H. Schiestl, “Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 10, pp. 5116–5121, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. de Diego, J. M. Katz, P. Marshall et al., “The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling,” Biochemistry, vol. 40, no. 4, pp. 1053–1062, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. González, F. J. Ramalho-Pinto, U. Frevert et al., “Proteasome activity is required for the stage-specific transformation of a protozoan parasite,” Journal of Experimental Medicine, vol. 184, no. 5, pp. 1909–1918, 1996. View at Scopus
  41. A. Parodi-Talice, V. Monteiro-Goes, N. Arrambide et al., “Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis,” Journal of Mass Spectrometry, vol. 42, no. 11, pp. 1422–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. M. Andrade, S. M. F. Murta, A. Chapeaurouge, J. Perales, P. Nirdé, and A. J. Romanha, “Proteomic analysis of Trypanosoma cruzi resistance to benznidazole,” Journal of Proteome Research, vol. 7, no. 6, pp. 2357–2367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Berriman, E. Ghedin, C. Hertz-Fowler et al., “The genome of the African trypanosome Trypanosoma brucei,” Science, vol. 309, no. 5733, pp. 416–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Bringaud, N. Biteau, S. E. Melville et al., “A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei,” Eukaryotic Cell, vol. 1, no. 1, pp. 137–151, 2002. View at Publisher · View at Google Scholar · View at Scopus