About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 180156, 4 pages
http://dx.doi.org/10.1155/2013/180156
Research Article

Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: Pleurotus Spp.

Department of Biotechnology, VBS Purvanchal University, Jaunpur, UP 222001, India

Received 13 April 2013; Accepted 26 May 2013

Academic Editor: Nikhat J. Siddiqi

Copyright © 2013 M. P. Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. B. Soares, M. Costa-Ferreira, and M. T. Pessoa de Amorim, “Decolorization of an anthraquinone-type dye using a laccase formulation,” Bioresource Technology, vol. 79, no. 2, pp. 171–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Wong and J. Yu, “Laccase-catalyzed decolorization of synthetic dyes,” Water Research, vol. 33, no. 16, pp. 3512–3520, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Pinheiro, E. Touraud, and O. Thomas, “Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters,” Dyes and Pigments, vol. 61, no. 2, pp. 121–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Forgacs, T. Cserháti, and G. Oros, “Removal of synthetic dyes from wastewaters: a review,” Environment International, vol. 30, no. 7, pp. 953–971, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. P. Chagas and L. R. Durrant, “Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju,” Enzyme and Microbial Technology, vol. 29, no. 8-9, pp. 473–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Murugesan, I.-H. Nam, Y.-M. Kim, and Y.-S. Chang, “Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture,” Enzyme and Microbial Technology, vol. 40, no. 7, pp. 1662–1672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Zheng and J. P. Obbard, “Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium,” Enzyme and Microbial Technology, vol. 31, no. 1-2, pp. 3–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Chivukula and V. Renganathan, “Phenolic azo dye oxidation by laccase from Pyricularia oryzae,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4374–4377, 1995. View at Scopus
  9. C. O'Neill, A. Lopez, S. Esteves, F. R. Hawkes, D. L. Hawkes, and S. Wilcox, “Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent,” Applied Microbiology and Biotechnology, vol. 53, no. 2, pp. 249–254, 2000. View at Scopus
  10. K. Fahr, H.-G. Wetzstein, R. Grey, and D. Schlosser, “Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi,” FEMS Microbiology Letters, vol. 175, no. 1, pp. 127–132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. V. S. Ferreira-Leitão, M. E. A. de Carvalho, and E. P. S. Bon, “Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods,” Dyes and Pigments, vol. 74, no. 1, pp. 230–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. K. Pandey, M. P. Singh, A. K. Srivastava, S. K. Vishwakarma, and S. Takshak, “Biodegradation of sugarcane bagasse by white rot fungus Pleurotus citrinopileatus,” Cellular and Molecular Biology, vol. 58, no. 1, pp. 8–14, 2012.
  13. M. P. Singh, V. K. Pandey, A. K. Srivastava, and S. K. Viswakarma, “Biodegradation of Brassica haulms by white rot fungus Pleurotus eryngii,” Cellular and Molecular Biology, vol. 57, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Vishwakarma, M. P. Singh, A. K. Srivastava, and V. K. Pandey, “Azo dye (direct blue) decolorization by immobilized extracellular enzymes of Pleurotus species,” Cellular and Molecular Biology, vol. 58, no. 1, pp. 21–25, 2012.
  15. K. Svobodová, A. Majcherczyk, Č. Novotný, and U. Kües, “Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes,” Bioresource Technology, vol. 99, no. 3, pp. 463–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Revankar and S. S. Lele, “Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1,” Bioresource Technology, vol. 98, no. 4, pp. 775–780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Riccardi, M. Papacchini, A. Mansi et al., “Characterization of bacterial population coming from a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) able to degrade pyrene in slurry phase,” Annals of Microbiology, vol. 55, no. 2, pp. 85–90, 2005. View at Scopus
  18. R. P. S. Dhaliwal, H. S. Garcha, and P. K. Khanna, “Regulation of lignocellulotic enzyme system in Pleurotus ostreatus,” Indian Journal of Microbiology, vol. 31, no. 2, pp. 181–184, 1991.
  19. J. Putter, “Peroxidases,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., vol. 2, pp. 685–690, Academic Press, NewYork, NY, USA, 1974.
  20. M. C. Abrahão, A. De Mello Gugliotta, R. Da Silva, R. J. Y. Fujieda, M. Boscolo, and E. Gomes, “Ligninolytic activity from newly isolated basidiomycete strains and effect of these enzymes on the azo dye orange II decolourisation,” Annals of Microbiology, vol. 58, no. 3, pp. 427–432, 2008. View at Scopus
  21. R. Neelamegam, V. Baskaran, R. Dhanasekar, and T. Viruthagiri, “Decolourization of synthetic dyes using rice straw attached Pleurotus ostreatus,” Indian Journal of Chemical Technology, vol. 11, no. 5, pp. 622–625, 2004. View at Scopus
  22. M. A. Pickard, H. Vandertol, R. Roman, and R. Vazquez-Duhalt, “High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium,” Canadian Journal of Microbiology, vol. 45, no. 7, pp. 627–631, 1999. View at Scopus
  23. M. P. Singh, A. K. Pandey, S. K. Vishwakarma, A. K. Srivastava, and V. K. Pandey, “Extracellular Xylanase Production by Pleurotus species on Lignocellulosic Wastes under in vivo Condition using Novel Pretreatment,” Cellular and Molecular Biology, vol. 58, no. 1, pp. 170–173, 2012.
  24. M. P. Singh, V. K. Pandey, A. K. Pandey, A. K. Srivastava, N. K. Vishwakarma, and V. K. Singh, “Production of xylanase by white rot fungi on wheat straw,” Asian Journal of Microbiology, Biotechnology and Environmental Sciences, vol. 10, no. 4, pp. 859–862, 2008. View at Scopus
  25. T. Tsukihara, Y. Honda, R. Sakai, T. Watanabe, and T. Watanabe, “Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2+,” Applied and Environmental Microbiology, vol. 74, no. 9, pp. 2873–2881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Hofrichter, “Review: lignin conversion by manganese peroxidase (MnP),” Enzyme and Microbial Technology, vol. 30, no. 4, pp. 454–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Rabinovich, A. V. Bolobova, and L. G. Vasil'chenko, “Fungal decomposition of natural aromatic structures and xenobiotics: a review,” Applied Biochemistry and Microbiology, vol. 40, no. 1, pp. 1–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. U. Meyer, “Biodegradation of synthetic organic colorants,” FEMS Symposium, vol. 12, pp. 371–385, 1981.
  29. T. Suzuki, S. Timofei, L. Kurunczi, U. Dietze, and G. Schüürmann, “Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure,” Chemosphere, vol. 45, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Zille, T. Tzanov, G. M. Gübitz, and A. Cavaco-Paulo, “Immobilized laccase for decolourization of reactive Black 5 dyeing effluent,” Biotechnology Letters, vol. 25, no. 17, pp. 1473–1477, 2003. View at Publisher · View at Google Scholar · View at Scopus