About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 187509, 11 pages
http://dx.doi.org/10.1155/2013/187509
Research Article

Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

1State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
2Graduate School of the Chinese Academy of Sciences, Kunming 650223, China
3Kunming Institute of Zoology, Chinese University of Hongkong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming 650223, China

Received 7 June 2013; Revised 23 August 2013; Accepted 26 August 2013

Academic Editor: Zhirong Sun

Copyright © 2013 Ai-Di Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ma and I. Goryanin, “Human metabolic network reconstruction and its impact on drug discovery and development,” Drug Discovery Today, vol. 13, no. 9-10, pp. 402–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Okun and C. R. Kleeman, “Renal disease secondary to metabolic disorders or physiological deficiency states,” California Medicine, vol. 107, no. 1, pp. 8–10, 1967. View at Scopus
  3. G. Thomas, A. R. Sehgal, S. R. Kashyap, T. R. Srinivas, J. P. Kirwan, and S. D. Navaneethan, “Metabolic syndrome and kidney disease: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 10, pp. 2364–2373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. I. Woroniecka, A. S. D. Park, D. Mohtat, D. B. Thomas, J. M. Pullman, and K. Susztak, “Transcriptome analysis of human diabetic kidney disease,” Diabetes, vol. 60, no. 9, pp. 2354–2369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. N. C. Duarte, S. A. Becker, N. Jamshidi et al., “Global reconstruction of the human metabolic network based on genomic and bibliomic data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1777–1782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Jerby, T. Shlomi, and E. Ruppin, “Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism,” Molecular Systems Biology, vol. 6, no. 401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. D. Vo, H. J. Greenberg, and B. O. Palsson, “Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data,” Journal of Biological Chemistry, vol. 279, no. 38, pp. 39532–39540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Agren, S. Bordel, A. Mardinoglu, N. Pornputtapong, I. Nookaew, and J. Nielsen, “Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT,” PLOS Computational Biology, vol. 8, no. 5, Article ID e1002518, 2012.
  9. Y. Zhao and J. Huang, “Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data,” Biochemical and Biophysical Research Communications, vol. 415, no. 3, pp. 450–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the american heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention,” Circulation, vol. 108, no. 17, pp. 2154–2169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Barrett, S. E. Wilhite, P. Ledoux, et al., “NCBI GEO: archive for functional genomics data sets—update,” Nucleic Acids Research, no. D1, pp. D991–D995, 2013.
  12. M. Uhlen, P. Oksvold, L. Fagerberg et al., “Towards a knowledge-based Human Protein Atlas,” Nature Biotechnology, vol. 28, no. 12, pp. 1248–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zur, E. Ruppin, and T. Shlomi, “iMAT: an integrative metabolic analysis tool,” Bioinformatics, vol. 26, no. 24, pp. 3140–3142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Garbis, G. Lubec, and M. Fountoulakis, “Limitations of current proteomics technologies,” Journal of Chromatography A, vol. 1077, no. 1, pp. 1–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. I. Su, T. Wiltshire, S. Batalov, et al., “A gene atlas of the mouse and human protein-encoding transcriptomes,” Proceedings of the National Academy of Sciences, vol. 101, no. 16, pp. 6062–6067, 2004.
  16. M. Ringwald, C. L. Wu, and A. I. Su, “BioGPS and GXD: mouse gene expression data-the benefits and challenges of data integration,” Mammalian Genome, vol. 23, no. 9-10, pp. 550–558, 2012.
  17. X. Dai, T. Erkkilä, O. Yli-Harja, and H. Lähdesmäki, “A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data,” BMC Bioinformatics, vol. 10, article 165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Radfar, W. Wong, and Q. Morris, “Computational prediction of intronic microRNA targets using host gene expression reveals novel regulatory mechanisms,” PLoS ONE, vol. 6, no. 6, Article ID e19312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Siddiqui, A. D. Delaney, A. Schnerch, O. L. Griffith, S. J. M. Jones, and M. A. Marra, “Sequence biases in large scale gene expression profiling data,” Nucleic Acids Research, vol. 34, no. 12, article e83, 2006. View at Scopus
  20. R. Blekhman, A. Oshlack, A. E. Chabot, G. K. Smyth, and Y. Gilad, “Gene regulation in primates evolves under tissue-specific selection pressures,” PLoS Genetics, vol. 4, no. 11, Article ID e1000271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lakshmanan, G. Koh, B. K. Chung, and D. Y. Lee, “Software applications for flux balance analysis,” Briefings in Bioinformatics. In press.
  22. J. Schellenberger, R. Que, R. M. T. Fleming et al., “Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0,” Nature Protocols, vol. 6, no. 9, pp. 1290–1307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-W. Chang, W.-C. Cheng, C.-R. Chen et al., “Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis,” PLoS ONE, vol. 6, no. 7, Article ID e22859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Shlomi, M. N. Cabili, and E. Ruppin, “Predicting metabolic biomarkers of human inborn errors of metabolism,” Molecular Systems Biology, vol. 5, no. 263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Prassas, C. C. Chrystoja, S. Makawita, and E. P. Diamandis, “Bioinformatic identification of proteins with tissue-specific expression for biomarker discovery,” BMC Medicine, vol. 10, article 39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Alam-Faruque, E. C. Dimmer, R. P. Huntley, C. O'Donovan, P. Scambler, and R. Apweiler, “The renal gene ontology annotation initiative,” Organogenesis, vol. 6, no. 2, pp. 71–75, 2010. View at Scopus
  27. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. S. Wishart, T. Jewison, A. C. Guo, et al., “HMDB 3.0—the human metabolome database in 2013,” Nucleic Acids Research, vol. 41, no. D1, 2012.
  30. N. T. Doncheva, Y. Assenov, F. S. Domingues, and M. Albrecht, “Topological analysis and interactive visualization of biological networks and protein structures,” Nature Protocol, vol. 7, no. 4, pp. 670–685, 2012.
  31. S. Maere, K. Heymans, and M. Kuiper, “BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks,” Bioinformatics, vol. 21, no. 16, pp. 3448–3449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Schlotterbeck, A. Ross, F. Dieterle, and H. Senn, “Metabolic profiling technologies for biomarker discovery in biomedicine and drug development,” Pharmacogenomics, vol. 7, no. 7, pp. 1055–1075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. R. Tennant and J. A. Lyon, “Web-based genetics resources for clinicians, researchers, students, and patients: online mendelian inheritance in man (OMIM) and genetests,” Journal of Electronic Resources in Medical Libraries, vol. 3, no. 2, pp. 1–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Tomoeda, H. Awata, T. Matsuura et al., “Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria,” Molecular Genetics and Metabolism, vol. 71, no. 3, pp. 506–510, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Mead, S. A. Irvine, and D. P. Ramji, “Lipoprotein lipase: structure, function, regulation, and role in disease,” Journal of Molecular Medicine, vol. 80, no. 12, pp. 753–769, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Forbes, K. Fukami, and M. E. Cooper, “Diabetic nephropathy: where hemodynamics meets metabolism,” Experimental and Clinical Endocrinology and Diabetes, vol. 115, no. 2, pp. 69–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Cascante, L. G. Boros, B. Comin-Anduix, P. de Atauri, J. J. Centelles, and P. W. Lee, “Metabolic control analysis in drug discovery and disease,” Nature Biotechnology, vol. 20, no. 3, pp. 243–249, 2002.