About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 414069, 7 pages
http://dx.doi.org/10.1155/2013/414069
Research Article

Method for Rapid Protein Identification in a Large Database

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2State Key Laboratory of Computer Architecture, ICT, CAS, Beijing 100190, China
3Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received 17 May 2013; Revised 10 July 2013; Accepted 14 July 2013

Academic Editor: Lei Chen

Copyright © 2013 Wenli Zhang and Xiaofang Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Cottrell, “Protein identification using MS/MS data,” Journal of Proteomics, vol. 74, no. 10, pp. 1842–1851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Johnson, M. T. Davis, J. A. Taylor, and S. D. Patterson, “Informatics for protein identification by mass spectrometry,” Methods, vol. 35, no. 3, pp. 223–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Edwards, “Protein identification from tandem mass spectra by database searching,” Methods in Molecular Biology, vol. 694, pp. 119–138, 2011. View at Scopus
  4. D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell, “Probability-based protein identification by searching sequence databases using mass spectrometry data,” Electrophoresis, vol. 20, no. 18, pp. 3551–3567, 1999. View at Scopus
  5. J. K. Eng, A. L. McCormack, and J. R. Yates III, “An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 11, pp. 976–989, 1994. View at Scopus
  6. R. Craig and R. C. Beavis, “TANDEM: matching proteins with tandem mass spectra,” Bioinformatics, vol. 20, no. 9, pp. 1466–1467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Y. Geer, S. P. Markey, J. A. Kowalak et al., “Open mass spectrometry search algorithm,” Journal of Proteome Research, vol. 3, no. 5, pp. 958–964, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Y. Geer, et al., “Reducing false positive rates in MS/MS sequence searching and incorporating intensity into match based statistics,” ftp://ftp.ncbi.nih.gov/pub/lewisg/presentations/asms06poster.pdf.
  9. D. Li, Y. Fu, R. Sun et al., “pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry,” Bioinformatics, vol. 21, no. 13, pp. 3049–3050, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Wang, D. Li, Y. Fu et al., “pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 21, no. 18, pp. 2985–2991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. EBI, http://www.ebi.ac.uk/uniprot/TrEMBLstats/.
  12. R. D. Bjornson, N. J. Carriero, C. Colangelo et al., “X!!Tandem, an improved method for running X!Tandem in parallel on collections of commodity computers,” Journal of Proteome Research, vol. 7, no. 1, pp. 293–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. T. Duncan, R. Craig, and A. J. Link, “Parallel tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem,” Journal of Proteome Research, vol. 4, no. 5, pp. 1842–1847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Quandt, P. Hernandez, P. Kunzst et al., “Grid-based analysis of tandem mass spectrometry data in clinical proteomics,” Studies in health technology and informatics, vol. 126, pp. 13–22, 2007. View at Scopus
  15. D. Zosso, M. Podvinec, M. Müller, R. Aebersold, M. C. Peitsch, and T. Schwede, “Tandem mass spectrometry protein identification on a PC grid,” Studies in Health Technology and Informatics, vol. 126, pp. 3–12, 2007. View at Scopus
  16. B. D. Halligan, J. F. Geiger, A. K. Vallejos, A. S. Greene, and S. N. Twigger, “Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms,” Journal of Proteome Research, vol. 8, no. 6, pp. 3148–3153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Pratt, J. J. Howbert, N. I. Tasman, and E. J. Nilsson, “Mr-tandem: parallel x!Tandem using hadoop MapReduce on Amazon web services,” Bioinformatics, vol. 28, no. 1, Article ID btr615, pp. 136–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Unimod, http://www.unimod.org/.
  19. E. Ahrné, M. Müller, and F. Lisacek, “Unrestricted identification of modified proteins using MS/MS,” Proteomics, vol. 10, no. 4, pp. 671–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Wilmes and P. L. Bond, “Metaproteomics: Studying functional gene expression in microbial ecosystems,” Trends in Microbiology, vol. 14, no. 2, pp. 92–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. D. Patterson, “Data analysis—the Achilles heel of proteomics,” Nature Biotechnology, vol. 21, no. 3, pp. 221–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Fu, L. Xiu, W. Jia et al., “DeltAMT: a statistical algorithm for fast detection of protein modifications from LC-MS/MS data,” Molecular and Cellular Proteomics, vol. 10, no. 5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Jia, Z. Lu, Y. Fu et al., “A strategy for precise and large scale identification of core fucosylated glycoproteins,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 913–923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Zhang, H. Chi, Y. Lu, Y. Huang, X. Zhao, and S. He, “Preliminary search engine for open protein identification,” in Proceeding of the 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 410–415, 2012.
  25. L. Wang, S. He, R. Sun et al., “An efficient parallelization of phosphorylated peptide and protein identification,” Rapid Communications in Mass Spectrometry, vol. 24, no. 12, pp. 1791–1798, 2010. View at Publisher · View at Google Scholar · View at Scopus