About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 480702, 14 pages
http://dx.doi.org/10.1155/2013/480702
Research Article

Elevated Expression of Fractalkine (CX3CL1) and Fractalkine Receptor (CX3CR1) in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

1Faculty of Pharmacy, University of Manitoba, Apotex Center 750, McDermot Avenue, Winnipeg, MB, Canada R3E 0T5
2Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E 3P5

Received 30 April 2013; Revised 2 July 2013; Accepted 15 July 2013

Academic Editor: Carl Muroi

Copyright © 2013 Wenjun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Namaka, K. Ethans, B. Jensen, F. Esfahani, and E. E. Frost, “Multiple sclerosis,” in Therapeutic Choices/e-Therapeutic, pp. 309–319, Canadian Pharmacists Association, Ottawa, Canada, 2011.
  2. C. M. R. Acosta, C. Cortes, H. Macphee, and M. P. Namaka, “Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair,” CNS & Neurological Disorders. In press.
  3. W. Zhu, J. A. Le Dorze, M. Prout, E. E. Frost, and M. P. Namaka, “An overview of Relapsing Remitting Multiple Sclerosis (RRMS) and current treatment options,” Pharmacy Practice, vol. 9, 2010.
  4. M. J. Tullman, “Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis,” American Journal of Managed Care, vol. 19, supplement 2, pp. s15–s20, 2013.
  5. F. Begum, W. Zhu, C. Cortes, B. Macneil, and M. Namaka, “Elevation of tumor necrosis factor alpha in dorsal root ganglia and spinal cord is associated with neuroimmune modulation of pain in an animal model of multiple sclerosis,” Journal of NeuroImmune Pharmacology, vol. 8, no. 3, pp. 677–690, 2013.
  6. R. M. Ransohoff, “Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology,” Immunity, vol. 31, no. 5, pp. 711–721, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. J. Karpus, “Chemokines and central nervous system disorders,” Journal of NeuroVirology, vol. 7, no. 6, pp. 493–500, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Abbadie, S. Bhangoo, Y. De Koninck, M. Malcangio, S. Melik-Parsadaniantz, and F. A. White, “Chemokines and pain mechanisms,” Brain Research Reviews, vol. 60, no. 1, pp. 125–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Pan, C. Lloyd, H. Zhou et al., “Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation,” Nature, vol. 387, no. 6633, pp. 611–617, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Bazan, K. B. Bacon, G. Hardiman et al., “A new class of membrane-bound chemokine with a CX3C motif,” Nature, vol. 385, no. 6617, pp. 640–642, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Chapman, K. Moores, D. Harrison, C. A. Campbell, B. R. Stewart, and P. J. Strijbos, “Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage,” The Journal of Neuroscience, vol. 20, no. 15, p. RC87, 2000. View at Scopus
  12. J. K. Harrison, Y. Jiang, S. Chen et al., “Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10896–10901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Lindia, E. McGowan, N. Jochnowitz, and C. Abbadie, “Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain,” Journal of Pain, vol. 6, no. 7, pp. 434–438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Haskell, W. W. Hancock, D. J. Salant et al., “Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection,” Journal of Clinical Investigation, vol. 108, no. 5, pp. 679–688, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. G. O. Ceyhan, S. Deucker, I. E. Demir et al., “Neural fractalkine expression is closely linked to pain and pancreatic neuritis in human chronic pancreatitis,” Laboratory Investigation, vol. 89, no. 3, pp. 347–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhuang, Y. Kawasaki, P. Tan, Y. Wen, J. Huang, and R. Ji, “Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine,” Brain, Behavior, and Immunity, vol. 21, no. 5, pp. 642–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Yasuda, T. Ito, T. Oono et al., “Fractalkine and TGF-β1 levels reflect the severity of chronic pancreatitis in humans,” World Journal of Gastroenterology, vol. 14, no. 42, pp. 6488–6495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Lamb, “The roles of fractalkine signaling in neurodegenerative disease,” Molecular Neurodegeneration, vol. 7, supplement 1, p. L21, 2012.
  19. A. Nishiyori, M. Minami, Y. Ohtani et al., “Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia?” FEBS Letters, vol. 429, no. 2, pp. 167–172, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. E. D. Milligan, E. M. Sloane, and L. R. Watkins, “Glia in pathological pain: a role for fractalkine,” Journal of Neuroimmunology, vol. 198, no. 1-2, pp. 113–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. G. M. Verge, E. D. Milligan, S. F. Maier, L. R. Watkins, G. S. Naeve, and A. C. Foster, “Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions,” European Journal of Neuroscience, vol. 20, no. 5, pp. 1150–1160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. F. E. Holmes, N. Arnott, P. Vanderplank et al., “Intra-neural administration of fractalkine attenuates neuropathic pain-related behaviour,” Journal of Neurochemistry, vol. 106, no. 2, pp. 640–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Hu, A. L. Bembrick, K. A. Keay, and E. M. McLachlan, “Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve,” Brain, Behavior, and Immunity, vol. 21, no. 5, pp. 599–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. D. Milligan, V. Zapata, M. Chacur et al., “Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats,” European Journal of Neuroscience, vol. 20, no. 9, pp. 2294–2302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. I. N. Johnston, E. D. Milligan, J. Wieseler-Frank et al., “A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine,” The Journal of Neuroscience, vol. 24, no. 33, pp. 7353–7365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Zhu, E. E. Frost, F. Begum et al., “The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis,” Journal of Cellular and Molecular Medicine, vol. 16, no. 8, pp. 1856–1865, 2012.
  27. M. Melanson, P. Miao, D. Eisenstat et al., “Experimental autoimmune encephalomyelitis-induced upregulation of tumor necrosis factor-alpha in the dorsal root ganglia,” Multiple Sclerosis, vol. 15, no. 10, pp. 1135–1145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Begum, W. Zhu, M. P. Namaka, and E. E. Frost, “A novel decalcification method for adult rodent bone for histological analysis of peripheral-central nervous system connections,” The Journal of Neuroscience Methods, vol. 187, no. 1, pp. 59–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Hargreaves, R. Dubner, F. Brown, C. Flores, and J. Joris, “A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia,” Pain, vol. 32, no. 1, pp. 77–88, 1988. View at Scopus
  30. K. A. Moller, B. Johansson, and O. Berge, “Assessing mechanical allodynia in the rat paw with a new electronic algometer,” The Journal of Neuroscience Methods, vol. 84, no. 1-2, pp. 41–47, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Sporkel, T. Uschkureit, H. Bussow, and W. Stoffel, “Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development,” Glia, vol. 37, no. 1, pp. 19–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Wang, Z. Huang, G. M. Hobson et al., “PLP1 alternative splicing in differentiating oligodendrocytes: characterization of an exonic splicing enhancer,” Journal of Cellular Biochemistry, vol. 97, no. 5, pp. 999–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  34. E. Mix, H. Meyer-Rienecker, and U. K. Zettl, “Animal models of multiple sclerosis for the development and validation of novel therapies—potential and limitations,” Journal of Neurology, vol. 255, supplement 6, pp. 7–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Namaka, D. Turcotte, C. Leong, A. Grossberndt, and D. Klassen, “Multiple sclerosis: etiology and treatment strategies,” Consultant Pharmacist, vol. 23, no. 11, pp. 886–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Aicher, M. B. Silverman, C. W. Winkler, and B. F. Bebo Jr., “Hyperalgesia in an animal model of multiple sclerosis,” Pain, vol. 110, no. 3, pp. 560–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Miao, K. Madec, Y. Gong et al., “Axotomy-induced up-regulation of tumor necrosis factor-alpha in the dorsal root ganglia,” Neurological Research, vol. 30, no. 6, pp. 623–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Solaro, E. Trabucco, and M. M. Uccelli, “Pain and multiple sclerosis: pathophysiology and treatment,” Current Neurology and Neuroscience Reports, vol. 13, no. 1, p. 320, 2013.
  39. P. L. Foley, H. M. Vesterinen, B. J. Laird et al., “Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis,” Pain, vol. 154, no. 5, pp. 632–642, 2013.
  40. J. G. D'Haese, I. E. Demir, H. Friess, and G. O. Ceyhan, “Fractalkine/CX3CR1: why a single chemokine-receptor duo bears a major and unique therapeutic potential,” Expert Opinion on Therapeutic Targets, vol. 14, no. 2, pp. 207–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Ludwig, C. Hundhausen, M. H. Lambert et al., “Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules,” Combinatorial Chemistry and High Throughput Screening, vol. 8, no. 2, pp. 161–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. A. Staniland, A. K. Clark, R. Wodarski et al., “Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice,” Journal of Neurochemistry, vol. 114, no. 4, pp. 1143–1157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. K. Clark, P. K. Yip, and M. Malcangio, “The liberation of fractalkine in the dorsal horn requires microglial cathepsin S,” The Journal of Neuroscience, vol. 29, no. 21, pp. 6945–6954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Coddou, S. S. Stojilkovic, and J. P. Huidobro-Toro, “Allosteric modulation of ATP-gated P2X receptor channels,” Reviews in the Neurosciences, vol. 22, no. 3, pp. 335–354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Clark, A. A. Staniland, F. Marchand, T. K. Y. Kaan, S. B. McMahon, and M. Malcangio, “P2X7-dependent release of interleukin-1β and nociception in the spinal cord following lipopolysaccharide,” The Journal of Neuroscience, vol. 30, no. 2, pp. 573–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Matsumiya, K. Ota, T. Imaizumi, H. Yoshida, H. Kimura, and K. Satoh, “Characterization of synergistic induction of CX3CL1/fractalkine by TNF-α and IFN-γ in vascular endothelial cells: an essential role for TNF-α in post-transcriptional regulation of CX3CL1,” Journal of Immunology, vol. 184, no. 8, pp. 4205–4214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. J. Sung, D. Kim, M. Davaatseren et al., “Genistein suppression of TNF-α-induced fractalkine expression in endothelial cells,” Cellular Physiology and Biochemistry, vol. 26, no. 3, pp. 431–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Huang, F. Shi, S. Jung et al., “The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system,” The FASEB Journal, vol. 20, no. 7, pp. 896–905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. H. Mills, L. M. Alabanza, D. A. Mahamed, and M. S. Bynoe, “Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis,” Journal of Neuroinflammation, vol. 9, p. 193, 2012.
  50. L. R. Watkins and S. F. Maier, “Glia: a novel drug discovery target for clinical pain,” Nature Reviews Drug Discovery, vol. 2, no. 12, pp. 973–985, 2003. View at Scopus
  51. S. Sweitzer, D. Martin, and J. A. DeLeo, “Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain,” Neuroscience, vol. 103, no. 2, pp. 529–539, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. M. Sweitzer, P. Schubert, and J. A. DeLeo, “Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain,” Journal of Pharmacology and Experimental Therapeutics, vol. 297, no. 3, pp. 1210–1217, 2001. View at Scopus
  53. S. Kastenbauer, U. Koedel, M. Wick, B. C. Kieseier, H. Hartung, and H. Pfister, “CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system,” Journal of Neuroimmunology, vol. 137, no. 1-2, pp. 210–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Gomes, R. Ferreira, J. George et al., “Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia,” Journal of Neuroinflammation, vol. 10, p. 16, 2013.