About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 686090, 11 pages
http://dx.doi.org/10.1155/2013/686090
Research Article

An Approach for Identifying Cytokines Based on a Novel Ensemble Classifier

1School of Information Science and Technology, Xiamen University, Xiamen, Fujian, China
2Center for Cloud Computing and Big Data, Xiamen University, Xiamen, Fujian, China
3Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China
4School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China

Received 12 May 2013; Revised 2 July 2013; Accepted 15 July 2013

Academic Editor: Lei Chen

Copyright © 2013 Quan Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Zou, W. C. Chen, Y. Huang, X. R. Liu, and Y. Jiang, “Identifying multi-functional enzyme with hierarchical multi-label classifier,” Journal of Computational and Theoretical Nanoscience, vol. 10, no. 4, pp. 1038–1043, 2013.
  2. C. Lin, Y. Zou, J. Qin et al., “Hierarchical classification of protein folds using a novel ensemble classifier,” PLoS ONE, vol. 8, no. 2, Article ID e56499, 2013. View at Publisher · View at Google Scholar
  3. Y. Yabuki, T. Muramatsu, T. Hirokawa, H. Mukai, and M. Suwa, “GRIFFIN: a system for predicting GPCR-G-protein coupling selectivity using a support vector machine and a hidden Markov model,” Nucleic Acids Research, vol. 33, no. 2, pp. W148–W153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Papasaikas, P. G. Bagos, Z. I. Litou, and S. J. Hamodrakas, “A novel method for GPCR recognition and family classification from sequence alone using signatures derived from profile hidden markov models,” SAR and QSAR in Environmental Research, vol. 14, no. 5-6, pp. 413–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-S. Yu, Y.-C. Chen, C.-H. Lu, and J.-K. Hwang, “Prediction of protein subcellular localization,” Proteins: Structure, Function and Genetics, vol. 64, no. 3, pp. 643–651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Heijne, “A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites,” International Journal of Neural Systems, vol. 8, no. 5-6, pp. 581–599, 1997. View at Scopus
  7. C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. W. R. Pearson, “Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms,” Genomics, vol. 11, no. 3, pp. 635–650, 1991. View at Scopus
  10. G. S. Ladics, G. A. Bannon, A. Silvanovich, and R. F. Cressman, “Comparison of conventional FASTA identity searches with the 80 amino acid sliding window FASTA search for the elucidation of potential identities to known allergens,” Molecular Nutrition and Food Research, vol. 51, no. 8, pp. 985–998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Huang, H. Chen, and Z. Sun, “CTKPred: an SVM-based method for the prediction and classification of the cytokine superfamily,” Protein Engineering, Design and Selection, vol. 18, no. 8, pp. 365–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Lata and G. P. S. Raghava, “CytoPred: a server for prediction and classification of cytokines,” Protein Engineering, Design and Selection, vol. 21, no. 4, pp. 279–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bateman, L. Coin, R. Durbin et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 32, pp. D138–D141, 2004. View at Scopus
  14. T. Huang, L. Chen, Y.-D. Cai, and K.-C. Chou, “Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property,” PLoS ONE, vol. 6, no. 9, Article ID e25297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Altınçay and C. Ergün, “Clustering based under-sampling for improving speaker verification decisions using AdaBoost,” in Structural, Syntactic, and Statistical Pattern Recognition, pp. 698–706, Springer, New York, NY, USA, 2004.
  16. H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning,” in Advances in intelligent computing, vol. 3644 of Lecture Notes in Computer Science, pp. 878–887, Springer, August 2005. View at Scopus
  17. C. Z. Cai, L. Y. Han, Z. L. Ji, X. Chen, and Y. Z. Chen, “SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence,” Nucleic Acids Research, vol. 31, no. 13, pp. 3692–3697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K.-C. Chou and Y.-D. Cai, “Predicting protein structural class by functional domain composition,” Biochemical and Biophysical Research Communications, vol. 321, no. 4, pp. 1007–1009, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Bairoch, R. Apweiler, C. H. Wu et al., “The Universal Protein Resource (UniProt),” Nucleic Acids Research, vol. 33, pp. D154–D159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Apweiler, A. Bairoch, C. H. Wu et al., “UniProt: the universal protein knowledgebase,” Nucleic Acids Research, vol. 32, supplement 1, pp. D115–D119, 2004. View at Scopus
  21. C. H. Wu, R. Apweiler, A. Bairoch et al., “The Universal Protein Resource (UniProt): an expanding universe of protein information,” Nucleic Acids Research, vol. 34, supplement 1, pp. D187–D191, 2006. View at Scopus
  22. Y.-D. Cai, X.-J. Liu, X.-B. Xu, and K.-C. Chou, “Prediction of protein structural classes by support vector machines,” Computers & Chemistry, vol. 26, no. 3, pp. 293–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Nakashima and K. Nishikawa, “Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies,” Journal of Molecular Biology, vol. 238, no. 1, pp. 54–61, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Bock and D. A. Gough, “Predicting protein-protein interactions from primary structure,” Bioinformatics, vol. 17, no. 5, pp. 455–460, 2001. View at Scopus
  25. R. Karchin, K. Karplus, and D. Haussler, “Classifying G-protein coupled receptors with support vector machines,” Bioinformatics, vol. 18, no. 1, pp. 147–159, 2002. View at Scopus
  26. S. Hua and Z. Sun, “A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach,” Journal of Molecular Biology, vol. 308, no. 2, pp. 397–407, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Yuan, K. Burrage, and J. S. Mattick, “Prediction of protein solvent accessibility using Support Vector Machines,” Proteins: Structure, Function and Genetics, vol. 48, no. 3, pp. 566–570, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. H. Q. Ding and I. Dubchak, “Multi-class protein fold recognition using support vector machines and neural networks,” Bioinformatics, vol. 17, no. 4, pp. 349–358, 2001. View at Scopus
  29. L. Nanni and A. Lumini, “MppS: an ensemble of support vector machine based on multiple physicochemical properties of amino acids,” Neurocomputing, vol. 69, no. 13–15, pp. 1688–1690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many could be better than all,” Artificial Intelligence, vol. 137, no. 1-2, pp. 239–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Hartigan and M. A. Wong, “Algorithm AS 136: a k-means clustering algorithm,” Journal of the Royal Statistical Society. Series C, vol. 28, no. 1, pp. 100–108, 1979.
  32. Q. Zou, X. B. Li, Y. Jiang, Y. M. Zhao, and G. H. Wang, “BinMemPredict: a web server and software for predicting membrane protein types,” Current Proteomics, vol. 10, no. 1, pp. 2–9, 2013.