About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 795676, 12 pages
http://dx.doi.org/10.1155/2013/795676
Research Article

Study of MicroRNAs Related to the Liver Regeneration of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum

Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received 13 June 2013; Accepted 28 July 2013

Academic Editor: Lei Chen

Copyright © 2013 Conger Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

To understand the mechanisms of liver regeneration better to promote research examining liver diseases and marine biology, normal and regenerative liver tissues of Chiloscyllium plagiosum were harvested 0 h and 24 h after partial hepatectomy (PH) and used to isolate small RNAs for miRNA sequencing. In total, 91 known miRNAs and 166 putative candidate (PC) miRNAs were identified for the first time in Chiloscyllium plagiosum. Through target prediction and GO analysis, 46 of 91 known miRNAs were screened specially for cellular proliferation and growth. Differential expression levels of three miRNAs (xtr-miR-125b, fru-miR-204, and hsa-miR-142-3p_R-1) related to cellular proliferation and apoptosis were measured in normal and regenerating liver tissues at 0 h, 6 h, 12 h, and 24 h using real-time PCR. The expression of these miRNAs showed a rising trend in regenerative liver tissues at 6 h and 12 h but exhibited a downward trend compared to normal levels at 24 h. Differentially expressed genes were screened in normal and regenerating liver tissues at 24 h by DDRT-PCR, and ten sequences were identified. This study provided information regarding the function of genes related to liver regeneration, deepened the understanding of mechanisms of liver regeneration, and resulted in the addition of a significant number of novel miRNAs sequences to GenBank.