About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 925373, 9 pages
http://dx.doi.org/10.1155/2013/925373
Research Article

Structural Adaptation of Cold-Active RTX Lipase from Pseudomonas sp. Strain AMS8 Revealed via Homology and Molecular Dynamics Simulation Approaches

1Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 8 January 2013; Revised 6 March 2013; Accepted 29 March 2013

Academic Editor: Yudong Cai

Copyright © 2013 Mohd. Shukuri Mohamad Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Gupta, N. Gupta, and P. Rathi, “Bacterial lipases: an overview of production, purification and biochemical properties,” Applied Microbiology and Biotechnology, vol. 64, no. 6, pp. 763–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Ollis, E. Cheah, M. Cygler et al., “The alpha/beta hydrolase fold,” Protein Engineering, vol. 5, no. 3, pp. 197–211, 1992. View at Scopus
  3. T. Norin and F. Hæffner, “Molecular modelling of lipase catalysed reactions. Prediction of enantioselectivities,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 5, pp. 591–600, 1999. View at Scopus
  4. K. E. Jaeger, S. Ransac, B. W. Dijkstra, C. Colson, M. Van Heuvel, and O. Misset, “Bacterial lipases,” FEMS Microbiology Reviews, vol. 15, no. 1, pp. 29–63, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. S. D'Amico, P. Claverie, T. Collins et al., “Molecular basis of cold adaptation,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1423, pp. 917–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Lilie, W. Haehnel, R. Rudolph, and U. Baumann, “Folding of a synthetic parallel β-roll protein,” FEBS Letters, vol. 470, no. 2, pp. 173–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Spiwok, P. Lipovová, T. Skálová, et al., “Cold-active enzymes studied by comparative molecular dynamics simulation,” Journal of Molecular Modeling, vol. 13, no. 4, pp. 485–497, 2007. View at Publisher · View at Google Scholar
  8. T. Collins, F. Roulling, F. Piette et al., “Fundamentals of cold-adapted enzymes,” in Psychrophiles: From Biodiversity to Biotechnology, R. Margesin, F. Schinner, J. C. Marx, and C. Gerday, Eds., pp. 211–227, Springer, Berlin, Germany, 2008.
  9. D. I. Paredes, K. Watters, D. J. Pitman, C. Bystroff, and J. S. Dordick, “Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility,” BMC Structural Biology, vol. 11, no. 1, p. 42, 2011. View at Publisher · View at Google Scholar
  10. E. Krieger, G. Vriend, and C. Spronk, “YASARA-Yet Another Scientific Artificial Reality Application”.
  11. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Subramaniam, “The Biology Workbench—a seamless database and analysis environment for the biologist,” Proteins, vol. 32, no. 1, pp. 1–2, 1998.
  13. R. Meier, T. Drepper, V. Svensson, K. E. Jaeger, and U. Baumann, “A calcium-gated lid and a large β-roll sandwich are revealed by the crystal structure of extracellular lipase from Serratia marcescens,” Journal of Biological Chemistry, vol. 282, no. 43, pp. 31477–31483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Angkawidjaja, D. J. You, H. Matsumura et al., “Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation,” FEBS Letters, vol. 581, no. 26, pp. 5060–5064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Eisenberg, R. Lüthy, and J. U. Bowie, “VERIFY3D: assessment of protein models with three-dimensional profiles,” Macromolecular Crystallography B, vol. 277, pp. 396–404, 1997. View at Publisher · View at Google Scholar
  16. G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of molecular biology, vol. 7, pp. 95–99, 1963. View at Scopus
  17. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, UK, 2004.
  18. Y. Duan, C. Wu, S. Chowdhury et al., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations,” Journal of Computational Chemistry, vol. 24, no. 16, pp. 1999–2012, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Xu, B. Gao, L. Zhang, J. Lin, X. Wang, and D. Wei, “Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols,” Biochimica et Biophysica Acta, vol. 1804, no. 12, pp. 2183–2190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Pascale, A. M. Cusano, F. Autore et al., “The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family,” Extremophiles, vol. 12, no. 3, pp. 311–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Pleiss, M. Fischer, and R. D. Schmid, “Anatomy of lipase binding sites: the scissile fatty acid binding site,” Chemistry and Physics of Lipids, vol. 93, no. 1-2, pp. 67–80, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Linhartová, L. Bumba, J. Mašín et al., “RTX proteins: a highly diverse family secreted by a common mechanism,” FEMS Microbiology Reviews, vol. 34, no. 6, pp. 1076–1112, 2010.
  23. K. A. McCall, C. C. Huang, and C. A. Fierke, “Function and mechanism of zinc metalloenzymes,” Journal of Nutrition, vol. 130, no. 5, pp. 1437S–1446S, 2000. View at Scopus
  24. B. A. Tejo, A. B. Salleh, and J. Pleiss, “Structure and dynamics of Candida rugosa lipase: the role of organic solvent,” Journal of Molecular Modeling, vol. 10, no. 5-6, pp. 358–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Giovanola, F. D'Antoni, M. Santacroce et al., “Role of a conserved glycine triplet in the NSS amino acid transporter KAAT1,” Biochimica Et Biophysica Acta, vol. 1818, no. 7, pp. 1737–1744, 2012. View at Publisher · View at Google Scholar
  26. G. Colombo, G. Ottolina, and G. Carrea, “Modelling of enzyme properties in organic solvents,” Monatshefte fur Chemie, vol. 131, no. 6, pp. 527–547, 2000. View at Scopus
  27. W. C. Choi, H. K. Myung, H. S. Ro, R. R. Sang, T. K. Oh, and J. K. Lee, “Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability,” FEBS Letters, vol. 579, no. 16, pp. 3461–3466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. El Khattabi, P. Van Gelder, W. Bitter, and J. Tommassen, “Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase,” Journal of Molecular Catalysis B, vol. 22, no. 5-6, pp. 329–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. B. Salleh, A. S. M. A. Rahim, R. N. Z. R. A. Rahman, T. C. Leow, and M. Basri, “The role of Arg157Ser in improving the compactness and stability of ARM lipase,” Journal of Computer Science Systems Biology, vol. 5, no. 2, pp. 039–046, 2012.
  30. H. Matsumura, T. Yamamoto, T. C. Leow et al., “Novel cation-π interaction revealed by crystal structure of thermoalkalophilic lipase,” Proteins, vol. 70, no. 2, pp. 592–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. C. Leow, R. N. Z. R. A. Rahman, M. Basri, and A. B. Salleh, “A thermoalkaliphilic lipase of Geobacillus sp. T1,” Extremophiles, vol. 11, no. 3, pp. 527–535, 2007. View at Publisher · View at Google Scholar · View at Scopus