About this Journal Submit a Manuscript Table of Contents
Child Development Research
Volume 2012 (2012), Article ID 465458, 5 pages
http://dx.doi.org/10.1155/2012/465458
Research Article

Observed Human Actions, and Not Mechanical Actions, Induce Searching Errors in Infants

1Department of School Education, Joetsu University of Education, Joetsu 943-8512, Japan
2Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Tokyo 102-0076, Japan
3Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
4Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
5The Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo 113-0033, Japan

Received 18 April 2012; Revised 12 May 2012; Accepted 18 May 2012

Academic Editor: Masha Gartstein

Copyright © 2012 Yusuke Moriguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. James, Principles of Psychology, Holt, New York, NY, USA, 1890.
  2. W. Prinz, “A common coding approach to perception and action,” in Relationships Between Perception and Action, O. Neumann and W. Prinz, Eds., pp. 167–201, Springer, Heidelberg, Germany, 1990.
  3. V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition in the premotor cortex,” Brain, vol. 119, no. 2, pp. 593–609, 1996. View at Scopus
  4. G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex and the recognition of motor actions,” Cognitive Brain Research, vol. 3, no. 2, pp. 131–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Buccino, F. Binkofski, G. R. Fink et al., “Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study,” European Journal of Neuroscience, vol. 13, no. 2, pp. 400–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Decety, J. Grèzes, N. Costes et al., “Brain activity during observation of actions. Influence of action content and subject's strategy,” Brain, vol. 120, no. 10, pp. 1763–1777, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. F. Tai, C. Scherfler, D. J. Brooks, N. Sawamoto, and U. Castiello, “The human premotor cortex Is 'mirror' only for biological actions,” Current Biology, vol. 14, no. 2, pp. 117–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Press, G. Bird, R. Flach, and C. Heyes, “Robotic movement elicits automatic imitation,” Cognitive Brain Research, vol. 25, no. 3, pp. 632–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Kilner, Y. Paulignan, and S. J. Blakemore, “An interference effect of observed biological movement on action,” Current Biology, vol. 13, no. 6, pp. 522–525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Rizzolatti, L. Fogassi, and V. Gallese, “Neurophysiological mechanisms underlying the understanding and imitation of action,” Nature Reviews Neuroscience, vol. 2, no. 9, pp. 661–670, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Shimada and K. Hiraki, “Infant's brain responses to live and televised action,” NeuroImage, vol. 32, no. 2, pp. 930–939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Falck-Ytter, G. Gredebäck, and C. von Hofsten, “Infants predict other people's action goals,” Nature Neuroscience, vol. 9, no. 7, pp. 878–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Moriguchi, T. Kanda, H. Ishiguro, and S. Itakura, “Children perseverate to a human's actions but not to a robot's actions,” Developmental Science, vol. 13, no. 1, pp. 62–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. N. Meltzoff, “Understanding the intentions of others: re-enactment of intended acts by 18-month-old children,” Developmental Psychology, vol. 31, no. 5, pp. 838–850, 1995. View at Scopus
  15. Y. Kanakogi and S. Itakura, “Developmental correspondence between action prediction and motor ability in early infancy,” Nature Communications, vol. 2, no. 1, article 341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. W. Boyer, J. Samantha Pan, and B. I. Bertenthal, “Infants' understanding of actions performed by mechanical devices,” Cognition, vol. 121, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Longo and B. I. Bertenthal, “Common coding of observation and execution of action in 9-month-old infants,” Infancy, vol. 10, no. 1, pp. 43–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Piaget, The Construction of Reality in the Child, Basic Books, New York, NY, USA, 1954.
  19. Y. Munakata, J. L. McClelland, M. H. Johnson, and R. S. Siegler, “Rethinking infant knowledge: toward an adaptive process account of successes and failures in object permanence tasks,” Psychological Review, vol. 104, no. 4, pp. 686–713, 1997. View at Scopus
  20. H. M. Wellman, D. Cross, and K. Bartsch, “Infant search and object permanence: a meta-analysis of the A-not-B error,” Monographs of the Society for Research in Child Development, vol. 51, no. 3, pp. 1–67, 1986. View at Scopus
  21. E. Thelen, G. Schöner, C. Scheier, and L. B. Smith, “The dynamics of embodiment: a field theory of infant perseverative reaching,” Behavioral and Brain Sciences, vol. 24, no. 1, pp. 1–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Marcovitch and P. D. Zelazo, “A hierarchical competing systems model of the emergence and early development of executive function,” Developmental Science, vol. 12, no. 1, pp. 1–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. B. Smith, E. Thelen, R. Titzer, and D. McLin, “Knowing in the context of acting: the task dynamics of the A-not-B error,” Psychological Review, vol. 106, no. 2, pp. 235–260, 1999. View at Scopus
  24. A. Diamond, “Neuropsychological insights into the meaning of object concept development,” in The Epigenesis of Mind: Essays on Biology and Cognition, S. Carey and R. Gelman, Eds., pp. 67–110, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1991.
  25. J. A. Sommerville, A. L. Woodward, and A. Needham, “Action experience alters 3-month-old infants' perception of others' actions,” Cognition, vol. 96, no. 1, pp. B1–B11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Southgate, M. H. Johnson, T. Osborne, and G. Csibra, “Predictive motor activation during action observation in human infants,” Biology Letters, vol. 5, no. 6, pp. 769–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. L. Woodward, “Infants selectively encode the goal object of an actor's reach,” Cognition, vol. 69, no. 1, pp. 1–34, 1998. View at Scopus