About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 250593, 4 pages
http://dx.doi.org/10.1155/2013/250593
Research Article

Generation of a Reconfigurable Logical Cell Using Evolutionary Computation

1Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, SLP, Mexico
2Centro de Innovación, Investigación y Desarrollo en Ingeniería Electrónica, Universidad Autónoma de Nuevo León, Km. 10 de la Nueva Carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, 66600 Apodaca, NL, Mexico
3División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Colonia Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico

Received 26 October 2012; Revised 12 February 2013; Accepted 13 February 2013

Academic Editor: Gualberto Solís-Perales

Copyright © 2013 I. Campos-Cantón et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Campos-Cantón, R. Femat, and A. N. Pisarchik, “A family of multimodal dynamic maps,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 9, pp. 3457–3462, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. S. Sinha and W. Ditto, “Dynamics based computation,” Physical Review Letters, vol. 81, no. 10, pp. 2156–2159, 1998. View at Publisher · View at Google Scholar
  3. S. Sinha and W. Ditto, “Computing with distributed chaos,” Physical Review E, vol. 60, no. 1, pp. 363–377, 1999. View at Publisher · View at Google Scholar
  4. T. Munakata, S. Sinha, and W. L. Ditto, “Chaos computing: implementation of fundamental logical gates by chaotic elements,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 11, pp. 1629–1633, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  5. D. Kuo, “Chaos and its computing paradigm,” IEEE Potentials, vol. 24, no. 2, pp. 13–15, 2005. View at Publisher · View at Google Scholar
  6. K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, “Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor,” Physical Review Letters, vol. 102, no. 10, Article ID 104101, 4 pages, 2009. View at Publisher · View at Google Scholar
  7. W. L. Ditto, A. Miliotis, K. Murali, S. Sinha, and M. L. Spano, “Chaogates: morphing logic gates that exploit dynamical patterns,” Chaos, vol. 20, no. 3, Article ID 037107, 7 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  8. K. Murali, A. Miliotis, W. L. Ditto, and S. Sinha, “Logic from nonlinear dynamical evolution,” Physics Letters A, vol. 373, no. 15, pp. 1346–1351, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. I. Campos-Cantón, E. Campos-Cantón, J. A. Pecina-Sanchez, and H. C. Rosu, “A simple circuit with dynamic logic architecture of basic logic gates,” International Journal of Bifurcation and Chaos, vol. 20, no. 8, pp. 2547–2551, 2010. View at Publisher · View at Google Scholar
  10. H. Peng, Y. Yang, L. Li, and H. Luo, “Harnessing piecewise-linear systems to construct dynamic logic architecture,” Chaos, vol. 18, no. 3, Article ID 033101, 6 pages, 2008. View at Publisher · View at Google Scholar
  11. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Ann Arbor, Mich, USA, 1975. View at MathSciNet
  12. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learnin, Addison-Wesley, New York, NY, USA, 1989.
  13. L. Torres, “Evonorm: easy and effective implementation of estimation of distribution algorithms,” in Research in Computing Science, A. Gelbuckh and S. S. Guerra, Eds., vol. 23, pp. 75–83, 2006.