About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 427050, 7 pages
http://dx.doi.org/10.1155/2013/427050
Research Article

Discrete Coupling and Synchronization in the Insulin Release in the Mathematical Model of the Cells

1Instituto de Investigación en Comunicación Óptica, Departamento de Físico Matemáticas, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP, Mexico
2División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Colonia Lomas 4a Sección, 78216 San Luis Potosí, SLP, Mexico

Received 19 October 2012; Revised 19 December 2012; Accepted 26 December 2012

Academic Editor: Gualberto Solís-Perales

Copyright © 2013 L. J. Ontañón-García and E. Campos-Cantón. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Meda, A. Perrelet, and L. Orci, “Gap junctions and β-cell function,” Hormone and Metabolic Research, vol. 10, Supplement 10, Biochemistry and Biophysics of the pancreatic, pp. 157–161, 1980. View at Scopus
  2. P. M. Dean and E. K. Matthews, “Electrical activity in pancreatic islet cells,” Nature, vol. 219, no. 5152, pp. 389–390, 1968. View at Publisher · View at Google Scholar · View at Scopus
  3. P. M. Dean and E. K. Matthews, “Glucose-induced electrical activity in pancreatic islet cells,” Journal of Physiology, vol. 210, no. 2, pp. 255–264, 1970. View at Scopus
  4. C. Amatore, S. Arbault, I. Bonifas, M. Guille, F. Lemaître, and Y. Verchier, “Relationship between amperometric pre-spike feet and secretion granule composition in Chromaffin cells: an overview,” Biophysical Chemistry, vol. 129, no. 2-3, pp. 181–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Smolen, J. Rinzel, and A. Sherman, “Why pancreatic islets burst but single β cells do not: the heterogeneity hypothesis,” Biophysical Journal, vol. 64, no. 6, pp. 1668–1680, 1993. View at Scopus
  6. P. Meda, I. Atwater, and A. Goncalves, “The topography of electrical synchrony among β-cells in the mouse islet of Langerhans,” Quarterly Journal of Experimental Physiology, vol. 69, no. 4, pp. 719–735, 1984. View at Scopus
  7. G. T. Eddlestone, A. Goncalves, J. A. Bangham, and E. Rojas, “Electrical coupling between cells in islets of langerhans from mouse,” Journal of Membrane Biology, vol. 77, no. 1, pp. 1–14, 1984. View at Scopus
  8. X.-P. Yan and W.-T. Li, “Global existence of periodic solutions in a simplified four-neuron BAM neural network model with multiple delays,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 57254, 18 pages, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. J. Duarte, L. Silva, and J. Sousa Ramos, “Computation of the topological entropy in chaotic biophysical bursting models for excitable cells,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 60918, 18 pages, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone, and E. Rojas, “The nature of the oscillatory behaviour in electrical activity from pancreatic β-cell,” Hormone and Metabolic Research, vol. 10, Biochemistry and Biophysics of the Pancreatic, pp. 100–107, 1980. View at Scopus
  11. T. R. Chay, “On the effect of the intracellular calcium-sensitive K+ channel in the bursting pancreatic β-cell,” Biophysical Journal, vol. 50, no. 5, pp. 765–777, 1986. View at Scopus
  12. D. M. Himmel and T. R. Chay, “Theoretical studies on the electrical activity of pancreatic β-cells as a function of glucose,” Biophysical Journal, vol. 51, no. 1, pp. 89–107, 1987. View at Scopus
  13. T. R. Chay, “Effect of compartmentalized Ca2+ ions on electrical bursting activity of pancreatic β-cells,” American Journal of Physiology, vol. 258, no. 5, pp. C955–C965, 1990. View at Scopus
  14. J. Keizer and P. Smolen, “Bursting electrical activity in pancreatic β cells caused by Ca2+ and voltage-inactivated Ca2+ channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 3897–3901, 1991. View at Scopus
  15. M. Pernarowski, “Fast and slow subsystems for a continuum model of bursting activity in the pancreatic islet,” SIAM Journal on Applied Mathematics, vol. 58, no. 5, pp. 1667–1687, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. A. Sherman and J. Rinzel, “Model for synchronization of pancreatic β-cells by gap junction coupling,” Biophysical Journal, vol. 59, no. 3, pp. 547–559, 1991. View at Scopus
  17. C. L. Stokes and J. Rinzel, “Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans,” Biophysical Journal, vol. 65, no. 2, pp. 597–607, 1993. View at Scopus
  18. G. De Vries and A. Sherman, “Channel sharing in pancreatic β-cells revisited: enhancement of emergent bursting by noise,” Journal of Theoretical Biology, vol. 207, no. 4, pp. 513–530, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. W. Van De Weem, J. G. B. Ramírez, R. Femat, and H. Nijmeijer, “Conditions for synchronization and chaos in networks of β-cells,” in Proceedings of the 2nd IFAC Conference on Analysis and Control of Chaotic Systems (CHAOS '09), pp. 176–181, June 2009. View at Scopus
  20. L. J. Ontañón-Garcìa, E. Campos-Cantón, R. Femat, I. Campos-Cantón, and M. Bonilla-Marìn, “Multivalued synchronization by poincaré coupling,” Communications in Nonlinear Science and Numerical Simulation. In press.
  21. P. M. Beigelman, B. Ribalet, and I. Atwater, “Electrical activity of mouse pancreatic β cells. II. Effects of glucose and arginine,” Journal de Physiologie, vol. 73, no. 2, pp. 201–217, 1977. View at Scopus
  22. A. Sherman, J. Rinzel, and J. Keizer, “Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing,” Biophysical Journal, vol. 54, no. 3, pp. 411–425, 1988. View at Scopus