About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 746713, 8 pages
http://dx.doi.org/10.1155/2013/746713
Research Article

Decentralized Discrete-Time Formation Control for Multirobot Systems

Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, 01219 México, DF, Mexico

Received 26 October 2012; Revised 5 January 2013; Accepted 9 January 2013

Academic Editor: Gualberto Solís-Perales

Copyright © 2013 E. G. Hernandez-Martinez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: antecedents and directions,” Autonomous Robots, vol. 4, no. 1, pp. 7–27, 1997. View at Scopus
  2. T. Arai, E. Pagello, and L. E. Parker, “Guest editorial advances in multirobot systems,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 655–661, 2002. View at Scopus
  3. T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998. View at Scopus
  4. W. M. Spears, D. F. Spears, J. C. Hamann, and R. Heil, “Distributed, physics-based control of swarms of vehicles,” Autonomous Robots, vol. 17, no. 2-3, pp. 137–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. W. Reynolds, “Flocks, birds and schools: a distributed behavioral model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987. View at Scopus
  6. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed memoryless point convergence algorithm for mobile robots with limited visibility,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5, pp. 818–828, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of multiple vehicle formations using structural potential functions,” in Proceedings of the 15th IFAC World Congress, pp. 2864–2869, 2002.
  8. B. Francis, M. Broucke, and Z. Lin, “Local control strategies for groups of mobile autonomous agents,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 622–629, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  9. E. G. Hernandez-Martinez and E. Aranda-Bricaire, “Convergence and collision avoidance in formation control: a survey of the artificial potential functions approach,” in Multi-Agent Systems—Modeling, Control, Programming, Simulations and Application, F. Alkhateeb, E. A. Maghayreh, and I. A. Doush, Eds., pp. 103–126, InTech, Rijeka, Croatia, 2011.
  10. Y. Q. Chen and Z. Wang, “Formation control: a review and a new consideration,” in Proceedings of the International Conference on Intelligent Robots and Systems, pp. 3181–3186, 2005.
  11. H. Yamaguchi, “A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations,” Robotics and Autonomous Systems, vol. 43, no. 4, pp. 257–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Asahiro, H. Asama, I. Suzuki, and M. Yamashita, “Improvement of distributed control algorithms for robots carrying an object,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 608–613, October 1999. View at Scopus
  13. J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  14. J. P. Desai, “A graph theoretic approach for modeling mobile robot team formations,” Journal of Robotic Systems, vol. 19, no. 11, pp. 511–525, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of formations of nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Wang and J. Slotine, “A theoretical study of different leader roles in networks,” IEEE Transactions on Automatic Control, vol. 51, no. 7, pp. 1156–1161, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  17. E. G. Hernández-Martínez and E. Aranda-Bricaire, “Non-collision conditions in multi-agent robots formation using local potential functions,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'08), pp. 3776–3781, Pasadena, Calif, USA, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. G. Hernandez-Martinez and E. Aranda-Bricaire, “Non-collision conditions in formation control using a virtual leader strategy,” in Proceedings of the 13th Congreso Latinoamericano de Control Automatico, pp. 798–803, 2008.
  19. F. Belkhouche and B. Belkhouche, “Modeling and controlling a robotic convoy using guidance laws strategies,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 35, no. 4, pp. 813–825, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. V. Dimarogonas and K. J. Kyriakopoulos, “Distributed cooperative control and collision avoidance for multiple kinematic agents,” in Proceedings of the 45th IEEE Conference on Decision and Control (CDC'06), pp. 721–726, San Diego, Calif, USA, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. G. Hernandez-Martinez and E. Aranda-Bricaire, “Decentralized formation control of multi-agent robots systems based on formation graphs,” IET Studies in Informatics and Control, vol. 21, no. 1, pp. 7–16, 2012.
  22. W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications, Springer, New York, NY, USA, 2008.
  23. S. Glavaski, A. Williams, and T. Samad, “Connectivity and convergence of formations,” in Cooperative Control of Distributed Multi-Agent Systems, J. S. Shamma, Ed., pp. 43–61, John Wiley & Sons, New York, NY, USA, 2007.
  24. D. E. Hernandez-Mendoza, G. R. Penaloza-Mendoza, and E. Aranda-Bricaire, “Discrete-time formation and marching control of multi-agent robots systems,” in Proceedings of the 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE'11), pp. 1–6, Merida City, Mexico, October 2011. View at Publisher · View at Google Scholar
  25. J. Antich and A. Ortiz, “Extending the potential fields approach to avoid trapping situations,” in Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems (IROS'05), pp. 1386–1391, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. G. Hernandez-Martinez and E. Aranda-Bricaire, “Non-collision conditions in multi-agent virtual leader-based formation control,” International Journal of Advanced Robotic Systems, vol. 9, no. 1, pp. 1–10, 2012.
  27. A. Muhammad and M. Egerstedt, “Connectivity graphs as models of local interactions,” in Proceedings of the 43rd IEEE Conference on Decision and Control (CDC'04), vol. 1, pp. 124–129, December 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. E. Bell, “Gershgorin's theorem and the zeros of polynomials,” The American Mathematical Monthly, vol. 72, pp. 292–295, 1965. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Applications to Linear Systems Theory, Princeton University Press, Princeton, NJ, USA, 2005. View at MathSciNet