About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 519031, 15 pages
http://dx.doi.org/10.1155/2012/519031
Research Article

A Systems Biology Approach to Uncovering Pharmacological Synergy in Herbal Medicines with Applications to Cardiovascular Disease

1Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
2School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
3Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
4Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received 19 August 2012; Accepted 10 October 2012

Academic Editor: Kashmira Nanji

Copyright © 2012 Xia Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. Clinical trials reveal that multiherb prescriptions of herbal medicine often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents. However, the synergistic mechanisms underlying this remain elusive. To address this question, a novel systems biology model integrating oral bioavailability and drug-likeness screening, target identification, and network pharmacology method has been constructed and applied to four clinically widely used herbs Radix Astragali Mongolici, Radix Puerariae Lobatae, Radix Ophiopogonis Japonici, and Radix Salviae Miltiorrhiza which exert synergistic effects of combined treatment of cardiovascular disease (CVD). Results. The results show that the structural properties of molecules in four herbs have substantial differences, and each herb can interact with significant target proteins related to CVD. Moreover, the bioactive ingredients from different herbs potentially act on the same molecular target (multiple-drug-one-target) and/or the functionally diverse targets but with potentially clinically relevant associations (multiple-drug-multiple-target-one-disease). From a molecular/systematic level, this explains why the herbs within a concoction could mutually enhance pharmacological synergy on a disease. Conclusions. The present work provides a new strategy not only for the understanding of pharmacological synergy in herbal medicine, but also for the rational discovery of potent drug/herb combinations that are individually subtherapeutic.