About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 519031, 15 pages
http://dx.doi.org/10.1155/2012/519031
Research Article

A Systems Biology Approach to Uncovering Pharmacological Synergy in Herbal Medicines with Applications to Cardiovascular Disease

1Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
2School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
3Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
4Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received 19 August 2012; Accepted 10 October 2012

Academic Editor: Kashmira Nanji

Copyright © 2012 Xia Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Cheung, “TCM: made in China,” Nature, vol. 480, pp. S82–S83, 2011.
  2. J. D. Adams, R. Wang, J. Yang, and E. J. Lien, “Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions,” Chinese Medicine, vol. 1, article 3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Fava, J. Alpert, A. A. Nierenberg et al., “A double-blind, randomized trial of St John's wort, fluoxetine, and placebo in major depressive disorder,” Journal of Clinical Psychopharmacology, vol. 25, no. 5, pp. 441–447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Spinella, “The importance of pharmacological synergy in psychoactive herbal medicines,” Alternative Medicine Review, vol. 7, no. 2, pp. 130–137, 2002. View at Scopus
  5. X. H. Ma, C. J. Zheng, L. Y. Han et al., “Synergistic therapeutic actions of herbal ingredients and their mechanisms from molecular interaction and network perspectives,” Drug Discovery Today, vol. 14, no. 11-12, pp. 579–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Yata, N. Sugihara, R. Yamajo, et al., “Enhanced small intestinal absorption of β-lactam antibiotics in rats in the presence of monodesmosides isolated from pericarps of Sapindus mukurossi (ENMEI-HI),” Journal of Pharmacobio-Dynamics, vol. 9, no. 2, pp. 211–217, 1986. View at Scopus
  7. V. Butterweck, F. Petereit, H. Winterhoff, and A. Nahrstedt, “Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test,” Planta Medica, vol. 64, no. 4, pp. 291–294, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Butterweck, U. Liefländer-Wulf, H. Winterhoff, and A. Nahrstedt, “Plasma levels of hypericin in presence of procyanidin B2 and hyperoside: a pharmacokinetic study in rats,” Planta Medica, vol. 69, no. 3, pp. 189–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Berenbaum, “Criteria for analyzing interactions between biologically active agents,” in Advances in Cancer Research, K. George and W. Sidney, Eds., pp. 269–335, Academic Press, 1981.
  10. J. Wiesner, D. Henschker, D. B. Hutchinson, E. Beck, and H. Jomaa, “In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 9, pp. 2889–2894, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. T. Nguyen, J. D. Hoopes, M. H. Le et al., “Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro,” PLoS One, vol. 5, no. 2, Article ID e9332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. F. Lock, N. Abdo, R. Huang, et al., “Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model,” Toxicological Sciences, vol. 126, pp. 578–588, 2012.
  13. C. R. Cho, M. Labow, M. Reinhardt, J. van Oostrum, and M. C. Peitsch, “The application of systems biology to drug discovery,” Current Opinion in Chemical Biology, vol. 10, no. 4, pp. 294–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Wu, X. M. Zhao, and L. Chen, “A systems biology approach to identify effective cocktail drugs,” BMC Systems Biology, vol. 4, supplement 2, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Li, B. Zhang, and N. Zhang, “Network target for screening synergistic drug combinations with application to traditional Chinese medicine,” BMC Systems Biology, vol. 5, supplement 1, article S10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Campillos, M. Kuhn, A.-C. Gavin, L. J. Jensen, and P. Bork, “Drug target identification using side-effect similarity,” Science, vol. 321, no. 5886, pp. 263–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science Press, Beijing, China, 2011.
  18. X. L. Lei and G. C. Chiou, “Studies on cardiovascular actions of Salvia miltiorrhiza,” The American Journal of Chinese Medicine, vol. 14, no. 1-2, pp. 26–32, 1986. View at Scopus
  19. D. G. Kang, H. Oh, H. T. Chung, and H. S. Lee, “Inhibition of angiotensin converting enzyme by lithospermic acid B isolated from radix Salviae miltiorrhiza bunge,” Phytotherapy Research, vol. 17, no. 8, pp. 917–920, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Makino, H. Wakushima, T. Okamoto, Y. Okukubo, K. I. Saito, and Y. Kano, “Effects of Kangen-karyu on coagulation system and platelet aggregation in mice,” Biological and Pharmaceutical Bulletin, vol. 25, no. 4, pp. 523–525, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Liu and W. Min, “Protective effects of astragaloside against ultraviolet A-induced photoaging in human fibroblasts,” Zhong Xi Yi Jie He Xue Bao, vol. 9, no. 3, pp. 328–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Deng and H. F. Chen, “Effects of Astragalus injection and its ingredients on proliferation and Akt phosphorylation of breast cancer cell lines,” Zhong Xi Yi Jie He Xue Bao, vol. 7, no. 12, pp. 1174–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-J. Lin, Y. C. Hou, C.-H. Lin et al., “Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells,” Biochemical and Biophysical Research Communications, vol. 378, no. 4, pp. 683–688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zhang, Y. Hu, D. Wang, et al., “The optimization of sulfation modification conditions for ophiopogonpolysaccharide based on antiviral activity,” International Journal of Biological Macromolecules, vol. 51, pp. 657–662, 2012.
  25. C. Deaton, E. S. Froelicher, L. H. Wu, C. Ho, K. Shishani, and T. Jaarsma, “The global burden of cardiovascular disease,” European Journal of Cardiovascular Nursing, vol. 10, supplement 2, pp. S5–S13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Yu, J. Chen, X. Xu, et al., “A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data,” PLoS One, vol. 7, Article ID e37608, 2012.
  27. X. Xu, W. Zhang, C. Huang, et al., “A novel chemometric method for the prediction of human oral bioavailability,” International Journal of Molecular Sciences, vol. 13, pp. 6964–6982, 2012.
  28. K. Németh, G. W. Plumb, J. G. Berrin et al., “Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans,” European Journal of Nutrition, vol. 42, no. 1, pp. 29–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Vistoli, A. Pedretti, and B. Testa, “Assessing drug-likeness—what are we missing?” Drug Discovery Today, vol. 13, no. 7-8, pp. 285–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Talete, Dragon for Windows (Software for Molecular Descriptor Calculations), Version 5.4, 2011, http://www.talete.mi.it/.
  31. X. Li, X. Xu, J. Wang, et al., “A system-level investigation into the mechanisms of Chinese traditional medicine: compound danshen formula for cardiovascular disease treatment,” PLoS One, vol. 7, Article ID e43918, 2012.
  32. C. F. Thorn, T. E. Klein, and R. B. Altman, “PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base,” Methods in Molecular Biology, vol. 311, pp. 179–191, 2005. View at Scopus
  33. F. Zhu, Z. Shi, C. Qin, et al., “Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery,” Nucleic Acids Research, vol. 40, pp. 1128–1136, 2012.
  34. M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. G. R. Zimmermann, J. Lehár, and C. T. Keith, “Multi-target therapeutics: when the whole is greater than the sum of the parts,” Drug Discovery Today, vol. 12, no. 1-2, pp. 34–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Sun, S. H. Huang, B. K. H. Tan et al., “Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction,” Life Sciences, vol. 76, no. 24, pp. 2849–2860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. H. M. Chang, K. Y. Chui, F. W. L. Tan et al., “Structure-activity relationship of miltirone, an active central benzodiazepine receptor ligand isolated from Salvia miltiorrhiza bunge (Danshen),” Journal of Medicinal Chemistry, vol. 34, no. 5, pp. 1675–1692, 1991. View at Scopus
  38. A. Yagi, K. Fujimoto, K. Tanonaka, K. Hirai, and S. Takeo, “Possible active components of Tan-Shen (Salvia miltiorrhiza) for protection of the myocardium against ischemia-induced derangements,” Planta Medica, vol. 55, no. 1, pp. 51–54, 1989. View at Scopus
  39. Q.-T. Zhao, Q.-M. Guo, P. Wang, and Q. Wang, “Salvianic acid A inhibits lipopolysaccharide-induced apoptosis through regulating glutathione peroxidase activity and malondialdehyde level in vascular endothelial cells,” Chinese Journal of Natural Medicines, vol. 10, pp. 53–57, 2012.
  40. X. Q. Yu, C. C. Xue, Z. W. Zhou, C. G. Li, and S. F. Zhou, “Tanshinone IIB, a primary active constituent from Salvia miltiorrhiza, exerts neuroprotective effect via inhibition of neuronal apoptosis in vitro,” Phytotherapy Research, vol. 22, no. 6, pp. 846–850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Perez-Vizcaino, J. Duarte, and R. Andriantsitohaina, “Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols,” Free Radical Research, vol. 40, no. 10, pp. 1054–1065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Shirataki, M. Takao, S. Yoshida, and S. Toda, “Antioxidative components isolated from the roots of Astragalus membranaceus Bunge (Astragali Radix),” Phytotherapy Research, vol. 11, pp. 603–605, 1997.
  43. H. J. Teede, B. P. McGrath, L. DeSilva, M. Cehun, A. Fassoulakis, and P. J. Nestel, “Isoflavones reduce arterial stiffness: a placebo-controlled study in men and postmenopausal women,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 6, pp. 1066–1071, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. L. Hertog, E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout, “Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study,” The Lancet, vol. 342, no. 8878, pp. 1007–1011, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. X. L. Xu, H. Ji, S. Y. Gu, Q. Shao, Q. J. Huang, and Y. P. Cheng, “Modification of alterations in cardiac function and sarcoplasmic reticulum by astragaloside IV in myocardial injury in vivo,” European Journal of Pharmacology, vol. 568, no. 1–3, pp. 203–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Hikino, S. Funayama, and K. Endo, “Hypotensive principle of Astragalus and Hedysarum roots,” Planta Medica, vol. 30, no. 4, pp. 297–302, 1976. View at Scopus
  47. H. Rong, J. F. Stevens, M. L. Deinzer, L. D. Cooman, and D. D. Keukeleire, “Identification of isoflavones in the roots of Pueraria lobata,” Planta Medica, vol. 64, no. 7, pp. 620–627, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. W. M. Keung and B. L. Vallee, “Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 4, pp. 1247–1251, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. M. R. Peluso, “Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver,” Experimental Biology and Medicine, vol. 231, no. 8, pp. 1287–1299, 2006. View at Scopus
  50. L. Y. Wang, A. P. Zhao, and X. S. Chai, “Effects of puerarin on cat vascular smooth muscle in vitro,” Zhongguo Yao Li Xue Bao, vol. 15, no. 2, pp. 180–182, 1994. View at Scopus
  51. Y. Lin, D. Zhu, J. Qi, M. Qin, and B. Yu, “Characterization of homoisoflavonoids in different cultivation regions of Ophiopogon japonicus and related antioxidant activity,” Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 5, pp. 757–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. W. Wang, H. Zhang, L. Q. Shen, and W. Wang, “Novel steroidal saponins from Liriope graminifolia (Linn.) Baker with anti-tumor activities,” Carbohydrate Research, vol. 346, no. 2, pp. 253–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Hasebe, K. Egawa, Y. Yamazaki et al., “Specific inhibition of hypoxia-inducible factor (HIF)-1α activation and of vascular endothelial growth factor (VEGF) production by flavonoids,” Biological and Pharmaceutical Bulletin, vol. 26, no. 10, pp. 1379–1383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Qian, F. Jiang, B. Wang et al., “Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells,” Journal of Ethnopharmacology, vol. 128, no. 2, pp. 438–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Morecroft, R. P. Heeley, H. M. Prentice, A. Kirk, and M. R. MacLean, “5-Hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT(1B) receptor,” British Journal of Pharmacology, vol. 128, no. 3, pp. 730–734, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Emilien and J. M. Maloteaux, “Current therapeutic uses and potential of β-adrenoceptor agonists and antagonists,” European Journal of Clinical Pharmacology, vol. 53, no. 6, pp. 389–404, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Ibarra, J. P. Pardo, J. J. López-Guerrero, and R. Villalobos-Molina, “Differential response to chloroethylclonidine in blood vessels of normotensive and spontaneously hypertensive rats: role of α(1D)- and α(1A)-adrenoceptors in contraction,” British Journal of Pharmacology, vol. 129, no. 4, pp. 653–660, 2000. View at Scopus
  58. W. Shimizu, C. Antzelevitch, K. Suyama et al., “Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada Syndrome,” Journal of Cardiovascular Electrophysiology, vol. 11, no. 12, pp. 1320–1329, 2000. View at Scopus
  59. J. I. Vandenberg, B. D. Walker, and T. J. Campbell, “HERG K+ channels: friend and foe,” Trends in Pharmacological Sciences, vol. 22, no. 5, pp. 240–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. P. M. Ridker, C. H. Hennekens, and J. P. Miletich, “G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men,” Circulation, vol. 99, no. 8, pp. 999–1004, 1999. View at Scopus
  61. W. A. Hsueh and D. Bruemmer, “Peroxisome proliferator-activated receptor gamma: implications for cardiovascular disease,” Hypertension, vol. 43, no. 2, pp. 297–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Veikkola, M. Karkkainen, L. Claesson-Welsh, and K. Alitalo, “Regulation of angiogenesis via vascular endothelial growth factor receptors,” Cancer Research, vol. 60, no. 2, pp. 203–212, 2000. View at Scopus
  63. D. Wang, Y. Liu, J. Han, et al., “Puerarin suppresses invasion and vascularization of endometriosis tissue stimulated by 17beta-estradiol,” PLoS One, vol. 6, Article ID e25011, 2011.
  64. S. Zhang, S. Chen, Y. Shen et al., “Puerarin induces angiogenesis in myocardium of rat with myocardial infarction,” Biological and Pharmaceutical Bulletin, vol. 29, no. 5, pp. 945–950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. K. H. Wong, G. Q. Li, K. M. Li, V. Razmovski-Naumovski, and K. Chan, “Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 584–607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Feher and J. M. Schmidt, “Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry,” Journal of Chemical Information and Computer Sciences, vol. 43, no. 1, pp. 218–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. C. Martin, “A bioavailability score,” Journal of Medicinal Chemistry, vol. 48, no. 9, pp. 3164–3170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Chan, M. Tan, J. Xin, S. Sudarsanam, and D. E. Johnson, “Interactions between traditional Chinese medicines and Western therapeutics,” Current Opinion in Drug Discovery and Development, vol. 13, no. 1, pp. 50–65, 2010. View at Scopus
  69. M. Tomaszewski, N. J. R. Brain, F. J. Charchar et al., “Essential hypertension and β2-adrenergic receptor gene: linkage and association analysis,” Hypertension, vol. 40, no. 3, pp. 286–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Verstraete, “Synthetic inhibitors of platelet glycoprotein IIb/IIIa in clinical development,” Circulation, vol. 101, no. 6, pp. E76–E80, 2000. View at Scopus
  71. J. Mestres, E. Gregori-Puigjané, S. Valverde, and R. V. Solé, “The topology of drug-target interaction networks: implicit dependence on drug properties and target families,” Molecular BioSystems, vol. 5, no. 9, pp. 1051–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. U. Förstermann and T. Münzel, “Endothelial nitric oxide synthase in vascular disease: from marvel to menace,” Circulation, vol. 113, no. 13, pp. 1708–1714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Guo, V. Andres, and K. Walsh, “Nitric oxide-induced downregulation of cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells,” Circulation, vol. 97, no. 20, pp. 2066–2072, 1998. View at Scopus
  74. J. I. Suzuki, M. Isobe, R. Morishita et al., “Prevention of graft coronary arteriosclerosis by antisense cdk2 kinase oligonucleotide,” Nature Medicine, vol. 3, no. 8, pp. 900–903, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Nishida, O. Yamaguchi, S. Hirotani et al., “P38α mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload,” Molecular and Cellular Biology, vol. 24, no. 24, pp. 10611–10620, 2004. View at Publisher · View at Google Scholar · View at Scopus