About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 908439, 14 pages
http://dx.doi.org/10.1155/2012/908439
Research Article

The Cortical and Striatal Gene Expression Profile of 100 Hz Electroacupuncture Treatment in 6-Hydroxydopamine-Induced Parkinson's Disease Model

1Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, China
2Department of Neurology, Stanford University, Stanford, CA 94305, USA
3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

Received 30 April 2011; Revised 5 September 2011; Accepted 26 September 2011

Academic Editor: Edwin L. Cooper

Copyright © 2012 Li-Rong Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Nussbaum and C. E. Ellis, “Alzheimer's disease and Parkinson's disease,” New England Journal of Medicine, vol. 348, no. 14, pp. 1356–1364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Cantuti-Castelvetri, C. Keller-McGandy, B. Bouzou et al., “Effects of gender on nigral gene expression and parkinson disease,” Neurobiology of Disease, vol. 26, no. 3, pp. 606–614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Miller and H. J. Federoff, “Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems,” Neuroscientist, vol. 11, no. 6, pp. 539–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. V. Schapira, “Treatment options in the modern management of Parkinson disease,” Archives of Neurology, vol. 64, no. 8, pp. 1083–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cristian, M. Katz, E. Cutrone, and R. H. Walker, “Evaluation of acupuncture in the treatment of Parkinson's disease: a double-blind pilot study,” Movement Disorders, vol. 20, no. 9, pp. 1185–1188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Eng, K. E. Lyons, M. S. Greene, and R. Pahwa, “Open-label trial regarding the use of acupuncture and Yin Tui Na in Parkinson's disease outpatients: a pilot study on efficacy, tolerability, and quality of life,” Journal of Alternative and Complementary Medicine, vol. 12, no. 4, pp. 395–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Shulman, X. Wen, W. J. Weiner et al., “Acupuncture therapy for the symptoms of Parkinson's disease,” Movement Disorders, vol. 17, no. 4, pp. 799–802, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. X. B. Liang, X. Y. Liu, F. Q. Li et al., “Long-term high-frequency electro-acupuncture stimulation prevents neuronal degeneration and up-regulates BDNF mRNA in the substantia nigra and ventral tegmental area following medial forebrain bundle axotomy,” Molecular Brain Research, vol. 108, no. 1-2, pp. 51–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. X. B. Liang, Y. Luo, X. Y. Liu et al., “Electro-acupuncture improves behavior and upregulates GDNF mRNA in MFB transected rats,” NeuroReport, vol. 14, no. 8, pp. 1177–1181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Jeon, J. K. Youn, S. T. Kim et al., “Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson's disease mouse model,” Proteomics, vol. 8, no. 22, pp. 4822–4832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. T. Kim, W. Moon, Y. Chae, Y. J. Kim, H. Lee, and H. J. Park, “The effect of electroaucpuncture for 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced proteomic changes in the mouse striatum,” Journal of Physiological Sciences, vol. 60, no. 1, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Jia, Z. Sun, B. Li et al., “Electro-acupuncture stimulation improves motor disorders in Parkinsonian rats,” Behavioural Brain Research, vol. 205, no. 1, pp. 214–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Jia, B. Li, Z. L. Sun, F. Yu, X. Wang, and X. M. Wang, “Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in parkinsonian model rats,” Behavioral Neuroscience, vol. 124, no. 2, pp. 305–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Park, S. Lim, W. S. Joo et al., “Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model,” Experimental Neurology, vol. 180, no. 1, pp. 92–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Y. Liu, H. F. Zhou, Y. L. Pan et al., “Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats,” Experimental Neurology, vol. 189, no. 1, pp. 189–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhu, X. Shen, and W. Pan, “Network-based support vector machine for classification of microarray samples,” BMC Bioinformatics, vol. 10, no. 1, article S21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Hong, H. K. Park, J. S. Yang et al., “Gene expression profile of acupuncture treatment in 1-methyl-4-phenyl-1,2, 3,6- tetrahydropyridine-induced Parkinson's disease model,” Neurological Research, vol. 32, no. 1, pp. S74–S78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yuan, S. Sarre, G. Ebinger, and Y. Michotte, “Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease,” Journal of Neuroscience Methods, vol. 144, no. 1, pp. 35–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. K. Kim, H. H. Lim, Y. K. Song et al., “Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats,” Neuroscience Letters, vol. 384, no. 1-2, pp. 133–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. W. Wright and R. M. Simon, “A random variance model for detection of differential gene expression in small microarray experiments,” Bioinformatics, vol. 19, no. 18, pp. 2448–2455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Clarke, H. W. Ressom, A. Wang et al., “The properties of high-dimensional data spaces: implications for exploring gene and protein expression data,” Nature Reviews Cancer, vol. 8, no. 1, pp. 37–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Xiao, J. Jia, D. Mo et al., “Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing,” PloS one, vol. 5, no. 6, Article ID e11377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Xiao, D. Mo, Q. Wang et al., “Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling,” BMC Genomics, vol. 11, no. 1, article 544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. D. Miller, P. M. Long, L. Wong, S. Mukherjee, L. M. McShane, and E. T. Liu, “Optimal gene expression analysis by microarrays,” Cancer Cell, vol. 2, no. 5, pp. 353–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID: database for annotation, visualization, and integrated discovery,” Genome biology, vol. 4, no. 5, p. P3, 2003. View at Scopus
  26. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Pujana, J. D. J. Han, L. M. Starita et al., “Network modeling links breast cancer susceptibility and centrosome dysfunction,” Nature Genetics, vol. 39, no. 11, pp. 1338–1349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Prieto, A. Risueño, C. Fontanillo, and J. De Las Rivas, “Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles,” PLoS ONE, vol. 3, no. 12, Article ID e3911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. L. Barabási and Z. N. Oltvai, “Network biology: understanding the cell's functional organization,” Nature Reviews Genetics, vol. 5, no. 2, pp. 101–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. J. Carlson, B. Zhang, Z. Fang, P. S. Mischel, S. Horvath, and S. F. Nelson, “Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks,” BMC Genomics, vol. 7, article 40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, “The KEGG resource for deciphering the genome,” Nucleic Acids Research, vol. 32, pp. D277–D280, 2004. View at Scopus
  32. M. Yi, J. D. Horton, J. C. Cohen, H. H. Hobbs, and R. M. Stephens, “WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data,” BMC Bioinformatics, vol. 7, article 30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Draghici, P. Khatri, A. L. Tarca et al., “A systems biology approach for pathway level analysis,” Genome Research, vol. 17, no. 10, pp. 1537–1545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Rabinstein and L. M. Shulman, “Acupuncture in clinical neurology,” Neurologist, vol. 9, no. 3, pp. 137–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Gash, Z. Zhang, A. Ovadia et al., “Functional recovery in parkinsonian monkeys treated with GDNF,” Nature, vol. 380, no. 6571, pp. 252–255, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Tseng, E. E. Baetge, A. D. Zurn, and P. Aebischer, “GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine,” Journal of Neuroscience, vol. 17, no. 1, pp. 325–333, 1997. View at Scopus
  37. R. M. Miller, G. L. Kiser, T. M. Kaysser-Kranich, R. J. Lockner, C. Palaniappan, and H. J. Federoff, “Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease,” Neurobiology of Disease, vol. 21, no. 2, pp. 305–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. B. Moran and M. B. Graeber, “Towards a pathway definition of Parkinson's disease: a complex disorder with links to cancer, diabetes and inflammation,” Neurogenetics, vol. 9, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Numan and K. B. Seroogy, “Increased expression of trkB mRNA in rat caudate-putamen following 6-OHDA lesions of the nigrostriatal pathway,” European Journal of Neuroscience, vol. 9, no. 3, pp. 489–495, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Yurek and A. Fletcher-Turner, “Differential expression of GDNF, BDNF, and NT-3 in the aging nigrostriatal system following a neurotoxic lesion,” Brain Research, vol. 891, no. 1-2, pp. 228–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Johansson, I. H. Lee, L. Olson, and C. Spenger, “Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions,” Brain, vol. 128, no. 12, pp. 2961–2976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Su and C. He, “Olfactory ensheathing cells: biology in neural development and regeneration,” Progress in Neurobiology, vol. 92, no. 4, pp. 517–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Hauser, Y. J. Li, H. Xu et al., “Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism,” Archives of Neurology, vol. 62, no. 6, pp. 917–921, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Zhang, M. James, F. A. Middleton, and R. L. Davis, “Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms,” American Journal of Medical Genetics—Neuropsychiatric Genetics, vol. 137, no. 1, pp. 5–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. B. Moran, D. C. Duke, M. Deprez, D. T. Dexter, R. K. B. Pearce, and M. B. Graeber, “Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease,” Neurogenetics, vol. 7, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Schaefer, T. Vogt, T. Nowak, and P. H. Kann, “Pituitary function and the somatotrophic system in patients with idiopathic Parkinson's disease under chronic dopaminergic therapy,” Journal of Neuroendocrinology, vol. 20, no. 1, pp. 104–109, 2008. View at Publisher · View at Google Scholar