About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 168361, 8 pages
http://dx.doi.org/10.1155/2012/168361
Review Article

The Optimal First-Line Therapy of Helicobacter pylori Infection in Year 2012

1Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
2Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
3Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
4Department of Health Management, I-Shou University, E-Da Hospital, Kaohsiung County 824, Taiwan
5Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
6Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
7Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan

Received 29 February 2012; Accepted 17 April 2012

Academic Editor: Ping-I Hsu

Copyright © 2012 Chao-Hung Kuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper reviews the literature about first-line therapies for H. pylori infection in recent years. First-line therapies are facing a challenge because of increasing treatment failure due to elevated antibiotics resistance. Several new treatment strategies that recently emerged to overcome antibiotic resistance have been surveyed. Alternative first-line therapies include bismuth-containing quadruple therapy, sequential therapy, concomitant therapy, and hybrid therapy. Levofloxacin-based therapy shows impressive efficacy but might be employed as rescue treatment due to rapidly raising resistance. Rifabutin-based therapy is also regarded as a rescue therapy. Several factors including antibiotics resistance, patient compliance, and CYP 2C19 genotypes could influence the outcome. Clinicians should use antibiotics according to local reports. It is recommended that triple therapy should not be used in areas with high clarithromycin resistance or dual clarithromycin and metronidazole resistance.

1. Introduction

Eradicating Helicobacter pylori (H. pylori) is the most important aspect of managing H. pylori-related gastrointestinal diseases. In the past decade, the Maastricht III Consensus Report has recommended that proton pump inhibitor- (PPI-) clarithromycin-amoxicillin or metronidazole treatment is the first choice for H. pylori infection [1]. Although some studies have revealed that the eradication rates of standard triple therapies are around 80% (by per-protocol (PP) analysis) [2, 3], most studies have demonstrated the success rate of recommended triple therapies is falling [47]. According to recent studies, such eradication rates have plummeted to even 25%–60% [810]. The many causes of fall in efficacy are varied including antibiotic resistance, poor compliance, high gastric acidity, high bacterial load, and the cytochrome P450 2C19 (CYP2C19) polymorphism [10]. Compliance is an important factor where patients with good compliance (taking more than 60% of prescribed agents) have a higher treatment success compared to patients with poor compliance (96 versus 69%) [11]. The factors that negatively affect successful eradication are an increase in body mass index and smoking [12, 13]. Besides, other factors including the patient’s history of antibiotic use, the cost, and availability of the drugs would also influence the choice of regimen.

In order to overcome the challenge of decreasing eradication rates, many novel first-line therapies have been developed. According to guidelines of the Maastricht III, the minimal acceptable eradication level recommended is an 80% eradication rate (by intention-to-treat (ITT) analysis) [1]. Graham and Fischbach recommended that clinicians should only use what works locally and ignore consensus statements and society guidelines if they are not consistent with local results [14]. According to the recommendation of the Asian Pacific Helicobacter pylori meeting 2012 in Singapore: (1) in areas with low clarithromycin resistance rates, standard triple therapy should be the primary choice, while bismuth-containing quadruple, sequential therapy, and concomitant therapy could be alternative first-line therapies and (2) in areas with high clarithromycin resistance, regimens including bismuth-containing quadruple, sequential therapy, and concomitance should be the better choice for first-line regimens. This paper will introduce recent novel and acceptable regimens as the first-line therapies of H. pylori and the factors influencing eradication.

2. Standard Triple Therapy

Triple therapies are still the most commonly used first-line therapy in the world despite decreasing efficacy [14]. Clarithromycin resistance plays the cardinal role in failure of eradication [1416]. The standard triple therapy showed a better eradication rate in clarithromycin-sensitive strains than in clarithromycin-resistant strains (88% versus 18%) [16], so it is recommended that standard first-line therapies should be abandoned in areas with clarithromycin resistance of more than 15–20% [14], because the eradication rate often decreased to less than 85% (PP) and less than 80% (ITT) [8, 9, 1517].

However, prolonged duration of standard triple therapy might be a good method to overcome the challenge of resistance. A systemic review showed that the distribution of clarithromycin-resistant strains ranged from 49% (Spain) to 1% (Netherlands) worldwide [18]. One American study in 2011 surveyed the efficacy of 14-day triple therapy. The eradication rates of 14-day standard therapy, concomitant therapy, and sequential therapy were 82.2% (401 of 488), 73.6% (360 of 489), and 76.5% (372 of 486), respectively. It demonstrated that fourteen-day triple therapy is preferable to 5-day concomitant or 10-day sequential four-drug regimens [19].

3. Bismuth-Containing Quadruple Therapy

The Maastricht III Consensus Report [1] and the Second Asia-Pacific Consensus Guidelines for H.  pylori Infection [20] both recommended bismuth-containing quadruple therapy as an alternative first-line regimen for H. pylori infection. Three studies with this combination given for 10 days have demonstrated eradication (or successful treatment, but DC rates) rates more than 90% [2123]. One study compared the efficacy of a 10-day bismuth-containing quadruple therapy and a 7-day triple therapy. Their data revealed that the bismuth-quadruple therapies had a higher eradication rate than the triple therapy (93% versus 70% by PP analysis) [23]. To improve compliance, one RCT presented that a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole was comparable to clarithromycin-based triple therapy. The eradication rates were 80% in the quadruple therapy group versus 55% in the standard therapy group [23]. Besides, the bismuth-containing quadruple therapy provides superior eradication with similar safety and tolerability to standard therapy. So the quadruple therapy should be considered as first-line treatment in the areas of high clarithromycin resistance.

However, there is no agreement with the duration of bismuth-containing quadruple therapy now. Ten or fourteen days are often used durations in these regimens [24]. Further survey is needed.

4. Sequential Therapy

A 10-day sequential therapy consists of a 5-day dual therapy with a PPI (standard dose, b.i.d.) and amoxicillin (1000 mg, b.i.d.) followed by a 5-day triple therapy with a PPI (standard dose, b.i.d.), clarithromycin (500 mg, b.i.d.) and metronidazole (500 mg, b.i.d.). This novel therapy shows an impressive eradication rate above 90% [2528]. The rationale of sequential therapy includes (1) Amoxicillin would decrease the bacterial load and then the risk of selection of clarithromycin-resistant mutant and (2) Amoxicillin may disrupt the efflux pump preventing clarithromycin resistance. Gatta et al. reported a meta-analysis (8 Italian studies) [26] that compared sequential therapy with standard triple therapy for 7 or 10 days, and they found the relative risk of H. pylori eradication was 1.21 (95% CI 1.17–1.25). This meta-analysis showed a trend preferring sequential therapy to triple therapy. Sequential therapies also demonstrated better eradication rates than standard triple therapy for clarithromycin-resistant strains (89% versus 29% by PP analysis) [25].

However, there is significant heterogeneity observed between results from Asia and Italy. One study in Asia compared the sequential therapy with standard triple therapy and found that the two methods did not have significantly different eradication rates (86% versus 77% by PP analysis) [29]. This suggests that there is likely to be a variation in eradication rates achieved by sequential therapy in different areas. Another concern is the efficacy of sequential therapy for dual resistance (clarithromycin and metronidazole resistance). Unfortunately, there is still no large study to confirm this point. Besides, sequential therapy is more complex than triple or quadruple therapies and this raises the concern about patient compliance. However, one study stated that there was no significantly different compliance between sequential therapy and concomitant therapy [30].

5. Concomitant Therapy

This regimen containing four-drug regimen: a PPI (standard dose, b.i.d.), clarithromycin (500 mg, b.i.d.), amoxicillin (1000 mg, b.i.d.), and metronidazole (500 mg, b.i.d.). All drugs are given during the course of concomitant therapy [30]. A meta-analysis was performed in 2009. It compares concomitant (293 subjects, duration 3 to 5 days) and triple therapy (283 subjects, duration 5 to 10 days) and four other studies evaluating concomitant therapy (478 subjects, duration 3 to 7 days). Pooled data showed that concomitant therapy had obviously better eradication rates than triple therapy: with pooled adds ratio (OR) of 2.86 (95% CI: 1.73–4.73) (by ITT analysis) and pooled OR of 3.52 (95% CI: 1.95–6.38) (by PP analysis) [31]. One recent study in 2012 also supports these results [32]. Concomitant therapy is less complex than sequential therapy. One randomized control trial compared the efficacy of sequential therapy and concomitant therapy and found that these two therapies showed similar eradication rates (93.1% versus 93.0% by PP analysis) and compliance [30].

6. Hybrid Therapy

Hsu et al. [33] presented one novel therapy—The hybrid therapy. This therapy consists of two-step therapy: a dual therapy for 7 days (a PPI (standard dose, b.i.d.) and amoxicillin (1000 mg, b.i.d.)) followed by a quadruple therapy for 7 days (a PPI (standard dose, b.i.d.), amoxicillin (1000 mg, b.i.d.), clarithromycin (500 mg, b.i.d.), and metronidazole (500 mg, b.i.d.)). In this therapy, the role of fourteen-day amoxicillin is to reduce the bacterial load and try to overcome the challenge of H. pylori with dual resistance (metronidazole and clarithromycin). They demonstrated hybrid therapy with high eradication rates: 97% (by ITT analysis) and 99% (by PP analysis). This study also surveyed the efficacy in the treatment of H. pylori with dual resistance. It also showed encouraging results. Tests on the efficacy of this new regimen is needed with further studies.

7. Quinolone-Based Therapy

Levofloxacin could be used as an alternative agent for clarithromycin in either a standard triple, quadruple, or sequential regimens. The use of levofloxacin in first-line therapy has also been surveyed. The eradication rates of levofloxacin-based triple therapy ranged from 72% to 96% [34]. The variable rates may result from the difference in resistances. One study demonstrated efficacy of levofloxacin-based triple therapy had higher eradication rate than clarithromycin-based triple therapy (83% versus 66% by PP analysis) [35]. It also showed that levofloxacin-based quadruple therapy had similar eradication rates with clarithromycin-based quadruple therapy (85% versus 81% by PP analysis). Another study surveys the impact of levofloxacin on sequential therapy [36]. It demonstrated that levofloxacin-based sequential therapy had higher eradication rates than clarithromycin-based therapy (96% versus 81 % by PP analysis).

The optimal dose of levofloxacin is another interesting point. The commonly used dosage of levofloxacin was 500 mg daily in many studies in Asia [37]. Studies demonstrated that increasing the dosage of levofloxacin cannot overcome levofloxacin resistance [38, 39]. Furthermore, previous studies suggest that once-daily dosing of a levofloxacin-based triple regimen may be as efficacious as twice daily [40].

One critical point should be remembered that quinolone resistance is raised rapidly in eradication of H. pylori. Primary resistance to levofloxacin ranges between 8% and 31% in different countries or regions [4143]. Inappropriate use of quinolone might result in the development of more quinolone-resistant pathogens and it might cause much trouble in controlling respiratory (especially tuberculosis) and urogenital tract infections. So the quinolone-based triple therapy is not generally recommended as first-line therapy. The regimen could be considered in those areas with clarithromycin resistance greater than 15%–20% and quinolone resistance less than 10% [34].

8. Rifabutin-Based Therapy

Rifabutin is an antituberculous agent and it is also effective for eradicating H. pylori [44]. The optimal duration of rifabutin-containing therapies is unclear, but most studies have recommended 10–12 days. However, there are concerns about rifabutin-based therapies. One is the side effect of myelotoxicity (22% (19–25%)) and ocular adverse events have been reported with rifabutin-based therapy [45]. Another disadvantage is popular use of rifabutin might result in the development of resistance to Mycobacterium tuberculosis and Mycobacterium avium. So it is usually used in rescue therapies only.

9. The Factors Influencing Eradication of H. pylori Infection

9.1. Resistance

Antibiotic resistance is the most serious problem in eradicating H. pylori. Resistance rates are remarkably variable in different geographic areas and therefore it is necessary to select the drugs according to local resistance patterns [46]. Clarithromycin resistance is the most important issue. The cause of high H. pylori clarithromycin resistance rates was mainly resulted from the long-term use of clarithromycin for respiratory tract infections [16]. A systemic review that included 11,697 cases was performed to survey the resistance rate of clarithromycin in the world in 2010. On a global scale, resistance was detected in 2014 cases (17.2%, 95% CI 16.5–17.9%). The resistance rates were obviously different among the following areas: Europe (11.1%), Asia (18.9%), and America (29.3%) [18]. A meta-analysis reported the impact of antibiotics resistance on treatment efficacy: clarithromycin resistance decreased the efficacy of PPI (standard dose, b.i.d.) + amoxicillin (1000 mg, b.i.d.) + clarithromycin (500 mg, b.i.d.) regimen by 66% (95% CI: 54–78%). The efficacy of patients receiving PPI (standard dose, b.i.d.) + metronidazole (250 mg, q.i.d.) + clarithromycin (500 mg, b.i.d.) regimen was decreased by 35% (95% CI: 24–44%) from clarithromycin resistance and decreased by 18% (95% CI: 13–23%) from metronidazole resistance [47]. Metronidazole resistance seems to have limited impact on efficacy of eradication.

The resistance to metronidazole is between 30 and 40% [48, 49], although it has less clinical impact. Metronidazole resistance can be partially overcome by increasing the dosage or treatment duration.

Resistance against amoxicillin is usually low around the world, so its resistance does not influence the use in treatment regimens.

Resistance to levofloxacin has increased rapidly in recent years and the worldwide resistance rate is around 16.2% (95% CI 14.4–18%). In Taiwan, about five-fold increase in levofloxacin resistance was observed in primary resistance (before the year 2004, 3.2%; after the year 2004, 16.3%) [49]. Average rate of primary levofloxacin resistance to H. pylori in Europe (2008-2009) is around 14.1% (4.0–28.0%) [47]. Resistance to fluoroquinolones would become a serious problem. The methods for preventing the selection of resistance include using a combination of antibiotics, increasing compliance, and increasing the length of treatment.

9.2. The Polymorphism of CYP2C19

The polymorphisms of CYP2C19 lead some patients to metabolize PPI more rapidly than others. Patients are divided into three phenotypes: extensive (EM), intermediate (IM), and poor (PM) metabolizers. Ethnic differences in the frequencies of CYP2C19 gene polymorphism are well known. Asian people have a higher proportion of poor metabolizers (20 versus 5%) compared to whites [50, 51]. The different phenotypes result in different degrees of PPI metabolism. The mechanisms whereby PPIs influence the efficacy of eradicating H. pylori include (1) PPIs make acid-labile antibiotics more stable by increasing gastric pH value, especially clarithromycin, thereby increasing concentration and H. pylori sensitivity to antibiotics (2) PPIs may alter transport of antibiotics from plasma to gastric juice, increase luminal concentrations and elevating the success rate of eradication [52]. CYP2C19 genotype-dependent H. pylori eradication rates were noted in many kinds of PPIs [51, 53, 54]. However, rabeprazole and esomeprazole were less influenced by polymorphism of CYP2C19 [51, 52].

The effect of increasing dose is unclear. One study in China demonstrated that increasing the dosage of omeprazole (20 to 40 mg) would improve the efficacy of eradication [55], but other studies did not find a similar dose-dependent effect by use of omeprazole, rabeprazole, and lansoprazole [56, 57].

9.3. The Impact of Probiotics in Eradicating H. pylori

It is difficult to develop new effective antibiotics to eradicate H. pylori, so it is necessary to find alternative methods to improve eradication rate and compliance in first-line therapy. So many studies have tried new treatment approaches by using probiotics. Several studies have previously reported that certain probiotics exhibit inhibitory activity against H. pylori in vitro and in vivo [58, 59]. Earlier studies demonstrated that standard triple therapy plus probiotics showed better eradication rate than standard triple therapy only [6062]. So probiotics become a promising adjunct for H. pylori eradication therapy because they could increase compliance by increasing tolerability and preventing side effects [6366]. The possible mechanisms of probiotics in eradicating H. pylori include production of inhibitory substance, host immune modulation or competition for adhesion [64, 67, 68]. But improvement of eradication rate is not always found in every regimen. One study revealed that levofloxacin-based sequential therapy and levofloxacin based triple therapy were significantly superior to standard triple therapy plus probiotic (PP/ITT analysis: 95.5/95.5%, 89.1/86.3%, and 77.1/72.4%, resp.) [69, 70].

In previous studies, Saccharomyces boulardii and Lactobacillus supp. are the most common probiotics used in clinical trials. Several meta-analysis studies showed that standard triple therapy accompanied with the Saccharomyces boulardii or Lactobacillus supp. could increase eradication rates and decrease therapy-related side effects, especially diarrhea and taste disturbance [7174].

In summary, the exactly mechanism of probiotics is largely unknown and further research is greatly needed. The restoration of the normal flora in the intestine might be important in patients receiving triple therapy for H. pylori eradication.

9.4. Patients with Penicillin Allergy

Drug allergy to penicillin is also an important factor influencing regimen chosen. In H. pylori infected patients allergic to penicillin, the previously recommended first-line treatment with omeprazole-clarithromycin-metronidazole has low efficacy for curing the infection. So other regimens which include bismuth-containing, non-bismuth-conatining quadruple therapies or levofloxacin-based triple therapy should be taken into consideration. These regimens showed better and acceptable eradication outcomes [75]. So it is reasonable to choose quadruple therapy or levofloxacin-based triple therapy for patients allergic to penicillin.

9.5. Smoking

Smoking might cause failure of H. pylori eradication therapy. One meta-analysis of 5538 patients in 2006 revealed that the summary OR for eradication failure among smokers relative to nonsmokers was 1.95 (95% CI: 1.55–2.45; P < 0.01). It also showed a better eradication rate of 8.4% (95% CI: 3.3–13.5%; P < 0.01) in nonsmokers [13].

10. Conclusion

First-line therapies of H. pylori infection are facing a challenge because of increasing treatment failure. The paper reviews several new treatment strategies with the intention to overcome antibiotic resistance (Table 1). Alternative first-line therapies include bismuth-containing quadruple therapy, sequential therapy, concomitant quadruple therapy, and hybrid therapy. Levofloxacin-based therapies showed impressive efficacy, but they might be employed as rescue treatment except in areas with high clarithromycin resistance. Antimicrobial resistance is very important to clarithromycin-containing therapies because of their impact on clinical outcome and high prevalence. Antimicrobial resistance is not important for the other groups of antibiotics (amoxicillin, tetracycline) because of the low prevalence. However, it is not practical to perform culturing before first-line therapy. The impact of CYP2C19 polymorphism on eradication should be also taken into consideration. The following recommendations are important. (1) Clinicians should know the local resistance rates. (2) In areas with low clarithromycin resistance rates, standard triple therapy should be the primary choice, while bismuth-containing quadruple, sequential therapy and concomitant therapy could be alternative first-line therapies. (3) In areas with high clarithromycin resistance, regimens including bismuth-containing quadruple, sequential therapy, and concomitant should be the better choice for first-line regimens. In summary, H. pylori infection is a common and serious infection, and we should prescribe the first-line regimens more carefully and empirically. Clinicians should use antibiotics according to local reports.

tab1
Table 1: Recommended first-line therapies for Helicobacter pylori infection.

Acknowledgments

The authors are thankful for the supports from Excellence for Cancer Research Center Grant DOH100-TD-C-111-002, Department of Health, Executive Yuan, Taiwan, Kaohsiung Medical University Hospital (KMUH100-0I01, KMUH100-0R02, KMUH100-0R04), and Changhua Christian Hospital-Kaohsiung Medical University (100-CCH-KMU-005).

References

  1. P. Malfertheiner, F. Megraud, C. O'Morain et al., “Current concepts in the management of Helicobacter pylori infection: the maastricht III consensus report,” Gut, vol. 56, no. 6, pp. 772–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. S. Qua, J. Manikam, and K. L. Goh, “Efficacy of 1-week proton pump inhibitor triple therapy as first-line Helicobacter pylori eradication regime in Asian patients: is it still effective 10 years on?” Journal of Digestive Diseases, vol. 11, no. 4, pp. 244–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Sasaki, N. Ogasawara, K. Utsumi et al., “Changes in 12-year first-line eradication rate of Helicobacter pylori based on triple therapy with proton pump inhibitor, amoxicillin and clarithromycin,” Journal of Clinical Biochemistry and Nutrition, vol. 47, no. 1, pp. 53–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. O'Connor, J. P. Gisbert, D. McNamara, and C. O'Morain, “Treatment of Helicobacter pylori infection 2010,” Helicobacter, vol. 15, supplement 1, pp. 46–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Selgrad and P. Malfertheiner, “Treatment of Helicobacter pylori,” Current Opinion in Gastroenterology, vol. 27, no. 6, pp. 565–570, 2011.
  6. H. G. Park, M. K. Jung, J. T. Jung et al., “Randomised clinical trial: a comparative study of 10-day sequential therapy with 7-day standard triple therapy for Helicobacter pylori infection in naïve patients,” Alimentary Pharmacology and Therapeutics, vol. 35, no. 1, pp. 56–65, 2012. View at Publisher · View at Google Scholar
  7. A. O'Connor, J. P. Gisbert, D. McNamara, and C. O'Morain, “Treatment of Helicobacter pylori infection 2011,” Helicobacter, vol. 16, supplement 1, pp. 53–58, 2011.
  8. Y. Gumurdulu, E. Serin, B. Özer et al., “Low eradication rate of Helicobacter pylori with triple 7–14 days and quadriple therapy in Turkey,” World Journal of Gastroenterology, vol. 10, no. 5, pp. 668–671, 2004. View at Scopus
  9. M. A. Bigard, J. C. Delchier, G. Riachi, P. Thibault, and P. Barthelemy, “One-week triple therapy using omeprazole, amoxycillin and clarithromycin for the eradication of Helicobacter pylori in patients with non-ulcer dyspepsia: influence of dosage of omeprazole and clarithromycin,” Alimentary Pharmacology and Therapeutics, vol. 12, no. 4, pp. 383–388, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. S. K. Chuah, F. W. Tsay, P. I. Hsu, and D. C. Wu, “A new look at anti-Helicobacter pylori therapy,” World Journal of Gastroenterology, vol. 17, no. 35, pp. 3971–3975, 2011. View at Publisher · View at Google Scholar
  11. D. Y. Graham, G. M. Lew, H. M. Malaty et al., “Factors influencing the eradication of Helicobacter pylori with triple therapy,” Gastroenterology, vol. 102, no. 2, pp. 493–496, 1992. View at Scopus
  12. M. Abdullahi, B. Annibale, D. Capoccia et al., “The eradication of Helicobacter pylori is affected by body mass index (BMI),” Obesity Surgery, vol. 18, no. 11, pp. 1450–1454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Suzuki, K. Matsuo, H. Ito et al., “Smoking increases the treatment failure for Helicobacter pylori eradication,” American Journal of Medicine, vol. 119, no. 3, pp. 217–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Y. Graham and L. Fischbach, “Helicobacter pylori treatment in the era of increasing antibiotic resistance,” Gut, vol. 59, no. 8, pp. 1143–1153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Gisbert, R. Pajares, and J. M. Pajares, “Evolution of Helicobacter pylori therapy from a meta-analytical perspective,” Helicobacter, vol. 12, no. 2, pp. 50–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Mégraud, “H pylori antibiotic resistance: prevalence, importance, and advances in testing,” Gut, vol. 53, no. 9, pp. 1374–1384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Y. Graham, H. Lu, and Y. Yamaoka, “Therapy for Helicobacter pylori infection can be improved: sequential therapy and beyond,” Drugs, vol. 68, no. 6, pp. 725–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. de Francesco, F. Giorgio, C. Hassan et al., “Worldwide H. pylori antibiotic resistance: a systematic review,” Journal of Gastrointestinal and Liver Diseases, vol. 19, no. 4, pp. 409–414, 2010. View at Scopus
  19. E. R. Greenberg, G. L. Anderson, D. R. Morgan et al., “14-day triple, 5-day concomitant, and 10-day sequential therapies for Helicobacter pylori infection in seven Latin American sites: a randomised trial,” The Lancet, vol. 378, no. 9790, pp. 507–514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Fock, P. Katelaris, K. Sugano et al., “Second Asia-Pacific consensus guidelines for Helicobacter pylori infection,” Journal of Gastroenterology and Hepatology, vol. 24, no. 10, pp. 1587–1600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. O'Morain, T. Borody, A. Farley et al., “Efficacy and safety of single-triple capsules of bismuth biskalcitrate, metronidazole and tetracycline, given with omeprazole, for the eradication of Helicobacter pylori: an international multicentre study,” Alimentary Pharmacology and Therapeutics, vol. 17, no. 3, pp. 415–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Laine, R. Hunt, H. EI-Zimaity, B. Nguyen, M. Osato, and J. Spénard, “Bismuth-based quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients: a prospective, randomized, multicenter, North American trial,” American Journal of Gastroenterology, vol. 98, no. 3, pp. 562–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Malfertheiner, F. Bazzoli, J. C. Delchier et al., “Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial,” The Lancet, vol. 377, no. 9769, pp. 905–913, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. W. D. Chey and B. C. Y. Wong, “American College of Gastroenterology guideline on the management of Helicobacter pylori infection,” American Journal of Gastroenterology, vol. 102, no. 8, pp. 1808–1825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Vaira, A. Zullo, N. Vakil et al., “Sequential therapy versus standard triple-drug therapy for Helicobacter pylori eradication: a randomized trial,” Annals of Internal Medicine, vol. 146, no. 8, pp. 556–563, 2007. View at Scopus
  26. L. Gatta, N. Vakil, G. Leandro, F. di Mario, and D. Vaira, “Sequential therapy or triple therapy for Helicobacter pylori infection: systematic review and meta-analysis of randomized controlled trials in adults and children,” American Journal of Gastroenterology, vol. 104, no. 12, pp. 3069–3079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. I. Hsu, D. C. Wu, J. Y. Wu, and D. Y. Graham, “Is there a benefit to extending the duration of Helicobacter pylori sequential therapy to 14 days?” Helicobacter, vol. 16, no. 2, pp. 146–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Sirimontaporn, D. Thong-Ngam, S. Tumwasorn, and V. Mahachai, “Ten-day sequential therapy of Helicobacter pylori infection in Thailand,” American Journal of Gastroenterology, vol. 105, no. 5, pp. 1071–1075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. W. H. Choi, D. I. Park, S. J. Oh et al., “Effectiveness of 10 day-sequential therapy for Helicobacter pylori eradication in Korea,” The Korean Journal of Gastroenterology, vol. 51, no. 5, pp. 280–284, 2008. View at Scopus
  30. D. C. Wu, P. I. Hsu, J. Y. Wu et al., “Sequential and concomitant therapy with four drugs is equally effective for eradication of H pylori infection,” Clinical Gastroenterology and Hepatology, vol. 8, no. 1, pp. 36–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. S. Essa, J. R. Kramer, D. Y. Graham, and G. Treiber, “Meta-analysis: four-drug, three-antibiotic, non-bismuth-containing “concomitant therapy” versus triple therapy for Helicobacter pylori eradication,” Helicobacter, vol. 14, no. 2, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Georgopoulos, V. Papastergiou, E. Xirouchakis et al., “Evaluation of a four-drug, three-antibiotic, vonbismuth-containing “concomitant” therapy as first-line Helicobacter pylori eradication regimen in Greece,” Helicobacter, vol. 17, no. 1, pp. 49–53, 2012. View at Publisher · View at Google Scholar
  33. P. I. Hsu, D. C. Wu, J. Y. Wu, and D. Y. Graham, “Modified sequential Helicobacter pylori therapy: proton pump inhibitor and amoxicillin for 14 days with clarithromycin and metronidazole added as a quadruple (hybrid) therapy for the final 7 days,” Helicobacter, vol. 16, no. 2, pp. 139–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Berning, S. Krasz, and S. Miehlke, “Should quinolones come first in Helicobacter pylori therapy?” Therapeutic Advances in Gastroenterology, vol. 4, no. 2, pp. 103–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Molina-Infante, B. Perez-Gallardo, M. Fernandez-Bermejo et al., “Clinical trial: clarithromycin vs. levofloxacin in first-line triple and sequential regimens for Helicobacter pylori eradication,” Alimentary Pharmacology and Therapeutics, vol. 31, no. 10, pp. 1077–1084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Romano, A. Cuomo, A. G. Gravina et al., “Empirical levofloxacin-containing versus clarithromycin-containing sequential therapy for Helicobacter pylori eradication: a randomised trial,” Gut, vol. 59, no. 11, pp. 1465–1470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. H. Kuo, H. M. Hu, F. C. Kuo et al., “Efficacy of levofloxacin-based rescue therapy for Helicobacter pylori infection after standard triple therapy: a randomized controlled trial,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 5, pp. 1017–1024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. M. Wong, Q. Gu, K. M. Chu et al., “Lansoprazole, levofloxacin and amoxicillin triple therapy vs. quadruple therapy as second-line treatment of resistant Helicobacter pylori infection,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 3, pp. 421–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. H. C. Cheng, W. L. Chang, W. Y. Chen, H. B. Yang, J. J. Wu, and B. S. Sheu, “Levofloxacin-containing triple therapy to eradicate the persistent H. pylori after a failed conventional triple therapy,” Helicobacter, vol. 12, no. 4, pp. 359–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. W. Chen, R. N. Chien, J. J. Chang, K. M. Fang, and L. C. Chang, “Comparison of the once-daily levofloxacin-containing triple therapy with the twice-daily standard triple therapy for first-line Helicobacter pylori eradication: a prospective randomised study,” International Journal of Clinical Practice, vol. 64, no. 11, pp. 1530–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Cammarota, A. Martino, G. Pirozzi et al., “High efficacy of 1-week doxycycline- and amoxicillin-based quadruple regimen in a culture-guided, third-line treatment approach for Helicobacter pylori infection,” Alimentary Pharmacology and Therapeutics, vol. 19, no. 7, pp. 789–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. L. M. Best, D. J. M. Haldane, G. S. Bezanson, and S. J. Veldhuyzen van Zanten, “Helicobacter pylori: primary susceptibility to clarithromycin in vitro in Nova Scotia,” Canadian Journal of Gastroenterology, vol. 11, no. 4, pp. 298–300, 1997. View at Scopus
  43. J. Cabrita, M. Oleastro, R. Matos et al., “Features and trends in Helicobacter pylori antibiotic resistance in Lisbon area, Portugal (1990–1999),” Journal of Antimicrobial Chemotherapy, vol. 46, no. 6, pp. 1029–1031, 2000. View at Scopus
  44. J. P. Gisbert and X. Calvet, “Review article: rifabutin in the treatment of refractory Helicobacter pylori infection,” Alimentary Pharmacology and Therapeutics, vol. 35, no. 2, pp. 209–221, 2012. View at Publisher · View at Google Scholar
  45. G. Apseloff, “Severe neutropenia among healthy volunteers given rifabutin in clinical trials,” Clinical Pharmacology and Therapeutics, vol. 74, no. 6, pp. 591–592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Rimbara, L. A. Fischbach, and D. Y. Graham, “Optimal therapy for Helicobacter pylori infections,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 2, pp. 79–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Fischbach and E. L. Evans, “Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 3, pp. 343–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. O'Connor, I. Taneike, A. Nami et al., “Helicobacter pylori resistance to metronidazole and clarithromycin in Ireland,” European Journal of Gastroenterology and Hepatology, vol. 22, no. 9, pp. 1123–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W. L. Chang, B. S. Sheu, H. C. Cheng, Y. J. Yang, H. B. Yang, and J. J. Wu, “Resistance to metronidazole, clarithromycin and levofloxacin of Helicobacter pylori before and after clarithromycin-based therapy in Taiwan,” Journal of Gastroenterology and Hepatology, vol. 24, no. 7, pp. 1230–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. F. C. Y. Cheng, S. K. Lam, and G. B. Ong, “Maximum acid output to graded doses of pentagastrin and its relation to parietal cell mass in Chinese patients with duodenal ulcer,” Gut, vol. 18, no. 10, pp. 827–832, 1977. View at Scopus
  51. C. H. Kuo, S. S. W. Wang, W. H. Hsu et al., “Rabeprazole can overcome the impact of CYP2C19 polymorphism on quadruple therapy,” Helicobacter, vol. 15, no. 4, pp. 265–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Kita, Y. Tanigawara, N. Aoyama et al., “CYP2C19 genotype related effect of omeprazole on intragastric pH and antimicrobial stability,” Pharmaceutical Research, vol. 18, no. 5, pp. 615–621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. J. M. Kang, N. Kim, D. H. Lee et al., “Effect of the CYP2C19 polymorphism on the eradication rate of Helicobacter pylori infection by 7-day triple therapy with regular proton pump inhibitor dosage,” Journal of Gastroenterology and Hepatology, vol. 23, part 1, no. 8, pp. 1287–1291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Jinda, K. Nakatani, J. Nishioka et al., “Personalized treatment in the eradication therapy for Helicobacter pylori,” International Journal of Molecular Medicine, vol. 27, no. 2, pp. 255–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. C. Yang, H. L. Wang, H. D. Chern et al., “Role of omeprazole dosage and cytochrome P450 2C19 genotype in patients receiving omeprazole-amoxicillin dual therapy for Helicobacter pylori eradication,” Pharmacotherapy, vol. 31, no. 3, pp. 227–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Pan, Y. Li, Y. Qiu et al., “Efficacy and tolerability of first-line triple therapy with levofloxacin and amoxicillin plus esomeprazole or rabeprazole for the eradication of Helicobacter pylori infection and the effect of CYP2C19 genotype: a 1-week, randomized, open-label study in Chinese adults,” Clinical Therapeutics, vol. 32, no. 12, pp. 2003–2011, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. H. Lee, H. Y. Jung, K. D. Choi, H. J. Song, G. H. Lee, and J. H. Kim, “The influence of CYP2C19 polymorphism on eradication of Helicobacter pylori: a prospective randomized study of lansoprazole and rabeprazole,” Gut and Liver, vol. 4, no. 2, pp. 201–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Aiba, N. Suzuki, A. M. A. Kabir, A. Takagi, and Y. Koga, “Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model,” American Journal of Gastroenterology, vol. 93, no. 11, pp. 2097–2101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. I. V. Pinchuk, P. Bressollier, B. Verneuil et al., “In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 11, pp. 3156–3161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. B. S. Sheu, J. J. Wu, C. Y. Lo et al., “Impact of supplement with Lactobacillus—and Bifidobacterium—containing yogurt on triple therapy for Helicobacter pylori eradication,” Alimentary Pharmacology and Therapeutics, vol. 16, no. 9, pp. 1669–1675, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. C. G. Goldman, D. A. Barrado, N. Balcarce et al., “Effect of a probiotic food as an adjuvant to triple therapy for eradication of Helicobacter pylori infection in children,” Nutrition, vol. 22, no. 10, pp. 984–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Y. Wang, S. N. Li, C. S. Liu et al., “Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori,” American Journal of Clinical Nutrition, vol. 80, no. 3, pp. 737–741, 2004. View at Scopus
  63. E. Lionetti, V. L. Miniello, S. P. Castellaneta et al., “Lactobacillus reuteri therapy to reduce side-effects during anti-Helicobacter pylori treatment in children: a randomized placebo controlled trial,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 10, pp. 1461–1468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Lesbros-Pantoflickova, I. Corthesy-Theulaz, L. Blum, et al., “Helicobacter pylori and probiotics,” Journal of Nutrition, vol. 137, supplement 3, pp. 812S–818S, 2007.
  65. K. Miki, Y. Urita, F. Ishikawa et al., “Effect of bifidobacterium bifidum fermented milk on Helicobacter pylori and serum pepsinogen levels in humans,” Journal of Dairy Science, vol. 90, no. 6, pp. 2630–2640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Myllyluoma, L. Veijola, T. Ahlroos et al., “Probiotic supplementation improves tolerance to Helicobacter pylori eradication therapy—a placebo—controlled, double-blind randomized pilot study,” Alimentary Pharmacology and Therapeutics, vol. 21, no. 10, pp. 1263–1272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Drouin, “Helicobacter pylori: novel therapies,” Canadian Journal of Gastroenterology, vol. 13, no. 7, pp. 581–583, 1999. View at Scopus
  68. I. J. Broekaert and W. A. Walker, “Probiotics and chronic disease,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 270–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Özdil, T. Çalhan, A. Sahin et al., “Levofloxacin based sequential and triple therapy compared with standard plus probiotic combination for Helicobacter pylori eradication,” Hepato-Gastroenterology, vol. 58, no. 109, pp. 1148–1152, 2011. View at Publisher · View at Google Scholar
  70. E. Lionetti, F. Indrio, L. Pavone, G. Borrelli, L. Cavallo, and R. Francavilla, “Role of probiotics in pediatric patients with Helicobacter pylori infection: a comprehensive review of the literature,” Helicobacter, vol. 15, no. 2, pp. 79–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. L. V. McFarland, “Systematic review and meta-analysis of saccharomyces boulardii in adult patients,” World Journal of Gastroenterology, vol. 16, no. 18, pp. 2202–2222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Szajewska, A. Horvath, and A. Piwowarczyk, “Meta-analysis: the effects of Saccharomyces boulardii supplementation on Helicobacter pylori eradication rates and side effects during treatment,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 9, pp. 1069–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Zou, J. Dong, and X. Yu, “Meta-analysis: lactobacillus containing quadruple therapy versus standard triple first-line therapy for Helicobacter pylori eradication,” Helicobacter, vol. 14, no. 5, pp. 97–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. J. L. Tong, Z. H. Ran, J. Shen, C. X. Zhang, and S. D. Xiao, “Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 2, pp. 155–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. P. Gisbert, A. Pérez-Aisa, M. Castro-Fernández et al., “Helicobacter pylori first-line treatment and rescue option containing levofloxacin in patients allergic to penicillin,” Digestive and Liver Disease, vol. 42, no. 4, pp. 287–290, 2010. View at Publisher · View at Google Scholar · View at Scopus