About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer's Disease
Volume 2011 (2011), Article ID 857368, 7 pages
http://dx.doi.org/10.4061/2011/857368
Review Article

Protein Kinase C-Regulated Aβ Production and Clearance

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA

Received 13 October 2010; Revised 3 December 2010; Accepted 13 December 2010

Academic Editor: Katsuhiko Yanagisawa

Copyright © 2011 Taehyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Alzheimer’s disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia among the elderly population [1, 2]. A major hallmark of AD is the abnormal processing and accumulation of neurite plaques containing amyloid β-peptide (Aβ) in the brain [3, 4]. Amyloid precursor protein (APP) is mainly cleaved by the α-secretase enzyme (Figure 1), producing the secretory form of amyloid precursor protein (sAPP; β-amyloid (Aβ) 17–42), which is soluble and nontoxic [5]. However, when APP is cleaved by β- and γ-secretase enzymes [6], it leads to the formation of Aβ1–40 and Aβ1–42, which are insoluble unlike sAPP, and results in the accumulation of amyloid plaques [7]. In the production of Aβ1–42, the Aβ1–42/Aβ1–40 ratio is associated with the amount of insoluble Aβ aggregation [8]. On the other hand, the abnormal hyperphosphorylation of tau results in insoluble fibrils and neurofibillary tangels in the brain [9, 10]. Thus, an understanding of the pathological processes of APP and tau in AD is a critical therapeutic target in preventing or delaying AD in humans [1113]. Here, we review the role of protein kinase C (PKC) in Aβ production and clearance through α-secretase or Aβ-degrading enzyme activity. Among several PKCs, we focus on the role of PKCε in Aβ levels because several recent findings have demonstrated that the activation or overexpression of PKCε promotes the Aβ degradation activity of endothelin converting enzyme type 1 (ECE-1) [14, 15].

857368.fig.001
Figure 1: Amyloid metabolism by secretases and Aβ-degradation enzymes (ECE-1, IDE, NEP). Aβ-degrading proteases play an important role in regulating Aβ levels via known cleavage sites (adapted from [1, 16, 17]).

2. PKC and Aβ Plaques

PKC is a phospholipid-dependent serine/threonine kinase and consists of at least 12 isoenzymes [18, 19]. PKCs can be classified into three subfamilies based on their protein structure and second messenger requirements: conventional (or classical), novel, and atypical. Conventional PKCs contain the α, β1, β2, and γ isoforms and require Ca2+, diacylglycerol (DAG), and a phospholipid such as phosphatidylcholine for activation. Novel PKCs include the δ, ε, η, θ, and μ isoforms and require DAG or phospholipids but do not require Ca2+ for activation. On the other hand, atypical PKCs consisting of protein kinase ζ, ι, and λ isoforms do not require either Ca2+ or diacylglycerol for activation [20].

Numerous studies have suggested that phorbol 12-myristate 13-acetate (PMA), a nonspecific PKC activator, is capable of lowering secreted Aβ levels in neurons [2124]. Based on these results, several studies have attempted to identify precisely which PKC isozyme actually regulates APP processing. The overexpression of PKCα or PKCε, but not PKCθ, has been shown to induce APP secretion from cells [25]. Interestingly, specific inhibition of either PKCα or PKCθ in CHO cells expressing APP695 was associated with a loss of PMA-mediated APP secretion [26]. In addition, experiments with a dominant negative fragment of PKCε reduced phorbol ester-induced secretion of sAPPα [15, 27]. However, even though intraparenchymal administration of phorbol esters reduces Aβ levels and decreases amyloid plaque density in mice expressing an amyloidogenic variant of human APP, α-secretase activity is not increased in the brain [28]. This raises the possibility that PKC reduces Aβ levels in vivo by another mechanism.

3. Aβ Clearance and Peptidases

The accumulation of Aβ in the brain is one of the main symptoms of AD [3]. An abnormality in the proteolytic degradation of Aβ appears to be associated with the progression of AD [29]. As shown in Figure 1, several proteases that degrade Aβ in mice include insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-converting enzyme (ECE) 1 and 2 [16, 30]. IDE (insulysin) is a ~110 KDa thiol zinc-metalloendopeptidase which is expressed in the cytosol, peroxisomes, and endosomes and on cell surfaces, and it is the major enzyme responsible for insulin degradation in vitro [31]. However, IDE has also been found to degrade Aβ in neuronal and microglial cells [32] and to eliminate the neurotoxic effects of Aβ [33]. Consistently, IDE-null mice showed increased levels of Aβ in the brain [34]. NEP is another key player in Aβ clearance [35]. In the brain, NEP is mainly expressed on neuronal plasma membranes [36]. NEP-null mice show defects in both the degradation of exogenously administered Aβ and in the metabolic suppression of endogenous Aβ levels in a gene dose-dependent manner [37]. The importance of these zinc-metalloendopeptidases in Aβ clearance is demonstrated by the fact that the transgenic overexpression of IDE or NEP in neurons significantly reduces Aβ levels and plaque associated with AD pathology [38]. Angiotensin-converting enzyme (ACE) is a membrane-bound zinc metalloprotease [39]. ACE mainly converts angiotensin I to angiotensin II, which is critical in the regulation of blood pressure, body fluid, and sodium homeostasis [40]. Recent studies indicate that ACE expression also promotes the degradation of Aβ [41].

Several receptor-mediated Aβ clearance mechanisms have already been examined [42]. Low-density lipoprotein receptor-related protein (LRP) and the receptor for advanced glycation end products (RAGE) regulate Aβ levels across the blood-brain barrier [43]. Both LRP and RAGE are multiligand cell surface receptors that mediate the clearance of a large number of proteins in addition to Aβ. LRP mainly removes Aβ from the brain to the periphery whereas RAGE appears to influx Aβ back to the brain from the periphery [42, 43].

4. Endothelin-Converting Enzymes (ECEs)

ECEs are a class of type II transmembrane metalloproteases, which convert pro-ET into endothelin [44]. Two different ECEs, including ECE-1 and ECE-2, are expressed in brain regions related to AD [45, 46]. Although ECE-1 is abundantly expressed in vascular endothelial cells [47], it is also expressed in nonvascular cells, including hippocampal and neocortical pyramidal neurons, cerebellar Purkinje cells, and astrocytes [48]. ECE-2 is also expressed in the brain, especially in several subpopulations of neurons in the thalamus, hypothalamus, amygdala, and hippocampus [46]. Studies have demonstrated that ECE-1 is a key enzyme for the degradation of Aβ in the brain [49]. The in vivo function of ECE has been examined in ECE-1 heterozygous (+/−) and ECE-2 null (−/−) mice. In both cases, levels of Aβ were increased compared with wild-type mice, suggesting that these ECEs are an important Aβ-degrading enzyme in vivo [50]. Another study demonstrated that NEP (−/−)/ECE-1 (+/−) or NEP (−/−)/ECE-2 (−/−) mice have increased accumulation of both Aβ1–40 and Aβ1–42 in the brain [51]. Interestingly, a genetic variant of human ECE-1 (ECE1B C-338A) with increased promoter activity was associated with a reduced risk of sporadic AD in a French Caucasian population [45]. ECE-1 degrades synthetic Aβ levels in vitro [50] and is the main ECE for Aβ degradation. Recently, the expression of ECE-2 has also been shown to be a relevant Aβ-degrading enzyme and is dramatically increased at both mRNA and protein levels of patients with AD [52].

Endothelin-1 (ET-1) is the major peptide formed by ECE-1, and its cellular actions are mediated via two G-protein coupled receptors, ETA and ETB, which are widely distributed in the brain [53]. ET-1 levels appear elevated in postmortem brains from patients with Alzheimer-type dementia [54]. A study indicates that ET-1 is increased in brain microvessels isolated from patients with AD and promotes the survival of brain neurons [55]. However, this effect might be associated with the protective actions of ET-1 in vivo, rather than contributing to the AD pathology [56].

5. PKCε, MAPK, and ETS Pathways

The activation of PKCs has suggested a neuroprotective function in animals [57]. PKC activators can also prevent the production of Aβ and extend the survival of AD transgenic mice [58]. However, chronic treatment of nonspecific PKC activators such as phorbol esters at high doses could increase levels of Aβ by decreasing PKC function or increasing APP synthesis [59]. These studies also suggest that the chronic application of phorbol esters may differentially regulate the function of PKC isoforms, downregulating PKCα and upregulating PKCε. There are several mechanisms by which the activation of PKCs could regulate the reduction of Aβ. Interestingly, our recent study demonstrates that overexpression of human PKCε reduces Aβ levels significantly in the brain (Figure 2). As shown in Figure 3, activation of PKCs including PKCα is known to promote α-secretase activity [25, 60], while activation or overexpression of PKCε stimulates Aβ-degrading activity of ECE-1, probably via MAPK-dependent Ets-1 pathway [14, 15]. MAPK is also known to activate α-secretase activity independently [61] or through PKC activation [6264]. Since MAPK can activate Ets-1 and 2 [65], it is possible that PKCε-mediated MAPK could control ETS pathways and thus regulate ECE expression in the brain. Additionally, ETS transcription factors play a key role in cell growth, differentiation, and survival [66]. ETS proteins form complexes and act synergistically with other transcription factor families such as PEA3 or AP-1 [67]. Ets-1 has been known to be involved in angiogenesis [68]. However, another research indicates that upregulation of Ets-2 is closely associated with AD neurodegenerative lesions in the brain [69].

fig2
Figure 2: Overexpression of PKCε reduces the amyloid plaque burden and inhibits Aβ accumulation in brain parenchyma. (a) Thioflavin S staining and anti-Aβ immunostaining revealed fewer plaques and Aβ immunoreactive deposits in the hippocampus and neocortex in APPInd/PKCεTg1 mice than in APPInd mice. Scale bar: 200 μm. Quantification of (b) thioflavin S staining and (c) Aβ deposits in hippocampus and cortex sections (adapted from [14]). by two-tailed -test.
857368.fig.003
Figure 3: Schematic summary of role of PKC-MAPK-dependent Aβ production and clearance. PKCα upregulates α-secretase activity while PKCε stimulates Aβ-degrading activity of ECE-1, probably via MAPK-dependent Ets-1 pathway. MAPK is also known to activate α-secretase activity independently or through PKC activation.

6. Conclusion

In Alzheimer’s disease (AD), it has long been known that activated PKCs reduce Aβ levels in the brain. PKC is also suggested to be a functional biomarker of AD [70]. The steady-state level of Aβ depends on a balance between production and clearance. In addition to Aβ production, several researchers suggest that enzyme-mediated degradation of Aβ is also critical for the regulation of Aβ levels [71]. Especially, since PKC is a key modulator in Aβ production or clearance in the brain [15, 58, 72], regulation of PKC activity could be a useful treatment target for AD [14, 73, 74]. However, the functional relevance of each PKC isoform in regulating Aβ levels in AD remains to be studied. Moreover, while α-secretase-mediated cleavage of APP via PKC isoforms reduces amyloid, detailed mechanisms of how PKC isoforms activate the enzyme-degradation system await further investigation. Therefore, PKC isoform-specific ligands or viral-mediated overexpression of PKC isoform as well as specific shRNAs approaches may unveil detailed molecular bases that underlie PKC-regulated Aβ clearance.

Acknowledgments

The authors thank D. Frederixon for her help in preparing the paper. This research was supported by the Samuel Johnson Foundation for Genomics of Addiction Program at Mayo Clinic, Rochester (DSC).

References

  1. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Scopus
  2. R. A. Sperling, B. C. Dickerson, M. Pihlajamaki et al., “Functional alterations in memory networks in early alzheimer's disease,” NeuroMolecular Medicine, vol. 12, no. 1, pp. 27–43, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. Marcello, R. Epis, and M. Di Luca, “Amyloid flirting with synaptic failure: towards a comprehensive view of Alzheimer's disease pathogenesis,” European Journal of Pharmacology, vol. 585, no. 1, pp. 109–118, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Gabelle, S. Roche, C. Gény et al., “Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in human cerebrospinal fluid,” Brain Research, vol. 1357, pp. 175–183, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. B. De Strooper, M. Simons, G. Multhaup, F. Van Leuven, K. Beyreuther, and C. G. Dotti, “Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence,” The EMBO Journal, vol. 14, no. 20, pp. 4932–4938, 1995. View at Scopus
  6. M. E. Fortini, “γ-secretase-mediated proteolysis in cell-surface-receptor signalling,” Nature Reviews Molecular Cell Biology, vol. 3, no. 9, pp. 673–684, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. Tiraboschi, L. A. Hansen, L. J. Thal, and J. Corey-Bloom, “The importance of neuritic plaques and tangles to the development and evolution of AD,” Neurology, vol. 62, no. 11, pp. 1984–1989, 2004. View at Scopus
  8. L. Mucke, E. Masliah, G. Q. Yu et al., “High-level neuronal expression of Aβ142 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation,” Journal of Neuroscience, vol. 20, no. 11, pp. 4050–4058, 2000. View at Scopus
  9. G. V. W. Johnson and W. H. Stoothoff, “Tau phosphorylation in neuronal cell function and dysfunction,” Journal of Cell Science, vol. 117, no. 24, pp. 5721–5729, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. M. Ittner, Y. D. Ke, F. Delerue et al., “Dendritic function of tau mediates amyloid-β toxicity in alzheimer's disease mouse models,” Cell, vol. 142, no. 3, pp. 387–397, 2010. View at Publisher · View at Google Scholar · View at PubMed
  11. M. S. Wolfe, “Selective amyloid-β lowering agents,” BMC Neuroscience, vol. 9, no. 2, article S4, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. Neugroschl and M. Sano, “An update on treatment and prevention strategies for Alzheimer's disease,” Current Neurology and Neuroscience Reports, vol. 9, no. 5, pp. 368–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. He, W. Luo, P. Li et al., “Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease,” Nature, vol. 467, no. 7311, pp. 95–98, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. D. S. Choi, D. Wang, G. Q. Yu et al., “PKCε increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 21, pp. 8215–8220, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. Zhu, D. Wang, Y.-H. Lin, T. McMahon, E. H. Koo, and R. O. Messing, “Protein kinase C ε suppresses Aβ production and promotes activation of α-secretase,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 997–1006, 2001. View at Publisher · View at Google Scholar · View at PubMed
  16. E. A. Eckman and C. B. Eckman, “Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention,” Biochemical Society Transactions, vol. 33, no. 5, pp. 1101–1105, 2005. View at Publisher · View at Google Scholar · View at PubMed
  17. B. De Strooper, R. Vassar, and T. Golde, “The secretases: enzymes with therapeutic potential in Alzheimer disease,” Nature Review Neurology, vol. 6, pp. 99–107, 2010.
  18. Y. Nishizuka, “Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C,” Science, vol. 258, no. 5082, pp. 607–614, 1992.
  19. J. Hofmann, “The potential for isoenzyme-selective modulation of protein kinase C,” FASEB Journal, vol. 11, no. 8, pp. 649–669, 1997.
  20. H. Mellor and P. J. Parker, “The extended protein kinase C superfamily,” Biochemical Journal, vol. 332, no. 2, pp. 281–292, 1998.
  21. J. D. Buxbaum, M. Oishi, H. I. Chen et al., “Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10075–10078, 1992. View at Publisher · View at Google Scholar
  22. A. Y. Hung, C. Haass, R. M. Nitsch et al., “Activation of protein kinase C inhibits cellular production of the amyloid β-protein,” The Journal of Biological Chemistry, vol. 268, no. 31, pp. 22959–22962, 1993.
  23. M. J. Savage, S. P. Trusko, D. S. Howland et al., “Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester,” Journal of Neuroscience, vol. 18, no. 5, pp. 1743–1752, 1998.
  24. H. Fu, J. Dou, W. Li et al., “Promising multifunctional anti-Alzheimer's dimer bis(7)-Cognitin acting as an activator of protein kinase C regulates activities of α-secretase and BACE-1 concurrently,” European Journal of Pharmacology, vol. 623, no. 1-3, pp. 14–21, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. T. Kinouchi, H. Sorimachi, K. Maruyama et al., “Conventional protein kinase C (PKC)-α and novel PKCε, but not -δ, increase the secretion of an N-terminal fragment of Alzheimer's disease amyloid precursor protein from PKC cDNA transfected 3Y1 fibroblasts,” FEBS Letters, vol. 364, no. 2, pp. 203–206, 1995. View at Publisher · View at Google Scholar
  26. C. Jolly-Tornetta and B. A. Wolf, “Regulation of amyloid precursor protein (APP) secretion by protein kinase Cα in human Ntera 2 neurons (NT2N),” Biochemistry, vol. 39, no. 25, pp. 7428–7435, 2000. View at Publisher · View at Google Scholar
  27. S. W. Yeon, M W. Jung, M. J. Ha et al., “Blockade of PKCε activation attenuates phorbol ester-induced increase of α-secretase-derived secreted form of amyloid precursor protein,” Biochemical and Biophysical Research Communications, vol. 280, no. 3, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at PubMed
  28. M. J. Savage, S. P. Trusko, D. S. Howland et al., “Turnover of amyloid β-protein in mouse brain and acute reduction of its level by phorbol ester,” Journal of Neuroscience, vol. 18, no. 5, pp. 1743–1752, 1998.
  29. D. J. Selkoe and D. Schenk, “Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 545–584, 2003. View at Publisher · View at Google Scholar · View at PubMed
  30. D. J. Selkoe, “Clearing the brain's amyloid cobwebs,” Neuron, vol. 32, no. 2, pp. 177–180, 2001. View at Publisher · View at Google Scholar
  31. W. C. Duckworth, R. G. Bennett, and F. G. Hamel, “Insulin degradation: progress and potential,” Endocrine Reviews, vol. 19, no. 5, pp. 608–624, 1998. View at Publisher · View at Google Scholar
  32. K. Vekrellis, Z. Ye, W. Q. Qiu et al., “Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme,” Journal of Neuroscience, vol. 20, no. 5, pp. 1657–1665, 2000.
  33. A. Mukherjee, E. S. Song, M. Kihiko-Ehmann et al., “Insulysin hydrolyzes amyloid β peptides to products that are neither neurotoxic nor deposit on amyloid plaques,” Journal of Neuroscience, vol. 20, no. 23, pp. 8745–8749, 2000.
  34. W. Farris, S. Mansourian, Y. Chang et al., “Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4162–4167, 2003. View at Publisher · View at Google Scholar · View at PubMed
  35. N. Iwata, S. Tsubuki, Y. Takaki et al., “Identification of the major Aβ-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition,” Nature Medicine, vol. 6, no. 2, pp. 143–150, 2000. View at Publisher · View at Google Scholar · View at PubMed
  36. K. Barnes, A. J. Turner, and A. J. Kenny, “Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase A (angiotensin converting enzyme) in the pig brain: a study using subcellular fractionation and electron microscopic immunocytochemistry,” Journal of Neurochemistry, vol. 58, no. 6, pp. 2088–2096, 1992. View at Publisher · View at Google Scholar
  37. N. Iwata, S. Tsubuki, Y. Takaki et al., “Metabolic regulation of brain Aβ by neprilysin,” Science, vol. 292, no. 5521, pp. 1550–1552, 2001. View at Publisher · View at Google Scholar · View at PubMed
  38. M. A. Leissring, W. Farris, A. Y. Chang et al., “Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death,” Neuron, vol. 40, no. 6, pp. 1087–1093, 2003. View at Publisher · View at Google Scholar
  39. J. L. Guy, D. W. Lambert, F. J. Warner, N. M. Hooper, and A. J. Turner, “Membrane-associated zinc peptidase families: comparing ACE and ACE2,” Biochimica et Biophysica Acta, vol. 1751, no. 1, pp. 2–8, 2005. View at Publisher · View at Google Scholar · View at PubMed
  40. B. Rigat, C. Hubert, F. Alhenc-Gelas, F. Cambien, P. Corvol, and F. Soubrier, “An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels,” The Journal of Clinical Investigation, vol. 86, no. 4, pp. 1343–1346, 1990.
  41. M. L. Hemming and D. J. Selkoe, “Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor,” The Journal of Biological Chemistry, vol. 280, no. 45, pp. 37644–37650, 2005. View at Publisher · View at Google Scholar · View at PubMed
  42. R. E. Tanzi, R. D. Moir, and S. L. Wagner, “Clearance of Alzheimer's Aβ peptide: the many roads to perdition,” Neuron, vol. 43, no. 5, pp. 605–608, 2004. View at Publisher · View at Google Scholar · View at PubMed
  43. B. V. Zlokovic, “Clearing amyloid through the blood-brain barrier,” Journal of Neurochemistry, vol. 89, no. 4, pp. 807–811, 2004. View at Publisher · View at Google Scholar · View at PubMed
  44. A. J. Turner and L. J. Murphy, “Molecular pharmacology of endothelin converting enzymes,” Biochemical Pharmacology, vol. 51, no. 2, pp. 91–102, 1996. View at Publisher · View at Google Scholar
  45. B. Funalot, T. Ouimet, A. Claperon et al., “Endothelin-converting enzyme-1 is expressed in human cerebral cortex and protects against Alzheimer's disease,” Molecular Psychiatry, vol. 9, no. 12, p. 1059, 2004. View at Publisher · View at Google Scholar
  46. H. Yanagisawa, R. E. Hammer, J. A. Richardson et al., “Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development,” The Journal of Clinical Investigation, vol. 105, no. 10, pp. 1373–1382, 2000.
  47. P. Korth, R. M. Bohle, P. Corvol, and F. Pinet, “Cellular distribution of endothelin-converting enzyme-1 in human tissues,” Journal of Histochemistry and Cytochemistry, vol. 47, no. 4, pp. 447–461, 1999.
  48. J. M. Sluck, R. C. S. Lin, L. I. Katolik, A. Y. Jeng, and J. C. Lehmann, “Endothelin converting enzyme-1-, endothelin-1-, and endothelin-3-like immunoreactivity in the rat brain,” Neuroscience, vol. 91, no. 4, pp. 1483–1497, 1999. View at Publisher · View at Google Scholar
  49. E. A. Eckman, D. K. Reed, and C. B. Eckman, “Degradation of the Alzheimer's amyloid β peptide by endothelin-converting enzyme,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24540–24548, 2001. View at Publisher · View at Google Scholar · View at PubMed
  50. E. A. Eckman, M. Watson, L. Marlow, K. Sambamurti, and C. B. Eckman, “Alzheimer's disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme,” The Journal of Biological Chemistry, vol. 278, no. 4, pp. 2081–2084, 2003. View at Publisher · View at Google Scholar · View at PubMed
  51. E. A. Eckman, S. K. Adams, F. J. Troendle et al., “Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme,” The Journal of Biological Chemistry, vol. 281, no. 41, pp. 30471–30478, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Aβ,” American Journal of Pathology, vol. 175, no. 1, pp. 262–270, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. V. Naidoo, S. Naidoo, R. Mahabeer, and D. M. Raidoo, “Cellular distribution of the endothelin system in the human brain,” Journal of Chemical Neuroanatomy, vol. 27, no. 2, pp. 87–98, 2004. View at Publisher · View at Google Scholar · View at PubMed
  54. M. Minami, M. Kimura, N. Iwamoto, and H. Arai, “Endothelin-1-like immunoreactivity in cerebral cortex of Alzheimer-type dementia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 19, no. 3, pp. 509–513, 1995. View at Publisher · View at Google Scholar
  55. J. Luo and P. Grammas, “Endothelin-1 is elevated in Alzheimer's disease brain microvessels and is neuroprotective,” Journal of Alzheimer's Disease, vol. 21, no. 3, pp. 887–896, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. M. Arundine and M. Tymianski, “Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity,” Cell Calcium, vol. 34, no. 4-5, pp. 325–337, 2003. View at Publisher · View at Google Scholar
  57. M. K. Sun, J. Hongpaisan, T. J. Nelson, and D. L. Alkon, “Poststroke neuronal rescue and synaptogenesis mediated in vivo by protein kinase C in adult brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13620–13625, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. R. Etcheberrigaray, L. D. Matzel, I. I. Lederhendler, and D. L. Alkon, “Classical conditioning and protein kinase C activation regulate the same single potassium channel in Hermissenda crassicornis photoreceptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 15, pp. 7184–7188, 1992. View at Publisher · View at Google Scholar
  59. O. A. B. da Cruz E Silva, S. Rebelo, S. I. Vieira, S. Gandy, E. F. da Cruz E Silva, and P. Greengard, “Enhanced generation of Alzheimer's amyloid-β following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C,” Journal of Neurochemistry, vol. 108, no. 2, pp. 319–330, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. S. B. Roberts, J. A. Ripellino, K. M. Ingalls, N. K. Robakis, and K. M. Felsenstein, “Non-amyloidogenic cleavage of the β-amyloid precursor protein by an integral membrane metalloendopeptidase,” The Journal of Biological Chemistry, vol. 269, no. 4, pp. 3111–3116, 1994.
  61. S. Bandyopadhyay, D. M. Hartley, C. M. Cahill, D. K. Lahiri, N. Chattopadhyay, and J. T. Rogers, “Interleukin-1α stimulates non-amyloidogenic pathway by α-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase,” Journal of Neuroscience Research, vol. 84, no. 1, pp. 106–118, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. M. Racchi, M. Mazzucchelli, A. Pascale, M. Sironi, and S. Govoni, “Role of protein kinase Cα in the regulated secretion of the amyloid precursor protein,” Molecular Psychiatry, vol. 8, no. 2, pp. 209–216, 2003. View at Publisher · View at Google Scholar · View at PubMed
  63. J. D. Buxbaum, E. H. Koo, and P. Greengard, “Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 9195–9198, 1993. View at Publisher · View at Google Scholar
  64. J. Mills, D. L. Charest, F. Lam et al., “Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway,” Journal of Neuroscience, vol. 17, no. 24, pp. 9415–9422, 1997.
  65. C. E. Foulds, M. L. Nelson, A. G. Blaszczak, and B. J. Graves, “Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment,” Molecular and Cellular Biology, vol. 24, no. 24, pp. 10954–10964, 2004. View at Publisher · View at Google Scholar · View at PubMed
  66. A. D. Sharrocks, “The ETS-domain transcription factor family,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 827–837, 2001. View at Publisher · View at Google Scholar · View at PubMed
  67. V. I. Sementchenko and D. K. Watson, “Ets target genes: past, present and future,” Oncogene, vol. 19, no. 55, pp. 6533–6548, 2000. View at Publisher · View at Google Scholar · View at PubMed
  68. T. Nakano, M. Abe, K. Tanaka, R. Shineha, S. Satomi, and Y. Sato, “Angiogenesis inhibition by transdominant mutant Ets-1,” Journal of Cellular Physiology, vol. 184, no. 2, pp. 255–262, 2000. View at Publisher · View at Google Scholar
  69. P. Helguera, A. Pelsman, G. Pigino, E. Wolvetang, E. Head, and J. Busciglio, “ets-2 promotes the activation of a mitochondrial death pathway in down's syndrome neurons,” Journal of Neuroscience, vol. 25, no. 9, pp. 2295–2303, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. Y. J. Wang, H. D. Zhou, and X. F. Zhou, “Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives,” Drug Discovery Today, vol. 11, no. 19-20, pp. 931–938, 2006. View at Publisher · View at Google Scholar · View at PubMed
  71. D. M. Skovronsky, D. B. Moore, M. E. Milla, R. W. Doms, and V. M.-Y. Lee, “Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network,” The Journal of Biological Chemistry, vol. 275, no. 4, pp. 2568–2575, 2000. View at Publisher · View at Google Scholar
  72. A. T. Weeraratna, A. Kalehua, I. DeLeon et al., “Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues,” Experimental Cell Research, vol. 313, no. 3, pp. 450–461, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. T. K. Khan, T. J. Nelson, V. A. Verma, P. A. Wender, and D. L. Alkon, “A cellular model of Alzheimer's disease therapeutic efficacy: PKC activation reverses Aβ-induced biomarker abnormality on cultured fibroblasts,” Neurobiology of Disease, vol. 34, no. 2, pp. 332–339, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. T. J. Nelson, C. Cui, Y. Luo, and D. L. Alkon, “Reduction of β-amyloid levels by novel protein kinase Ċactivators,” The Journal of Biological Chemistry, vol. 284, no. 50, pp. 34514–34521, 2009. View at Publisher · View at Google Scholar · View at PubMed