About this Journal Submit a Manuscript Table of Contents
International Journal of Food Science
Volume 2013 (2013), Article ID 585931, 12 pages
http://dx.doi.org/10.1155/2013/585931
Review Article

Ethoxyquin: An Antioxidant Used in Animal Feed

1Department of General Genetics, Molecular Biology and Plant Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
2Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland

Received 15 January 2013; Accepted 2 April 2013

Academic Editor: Ángel Medina-Vayá

Copyright © 2013 Alina Błaszczyk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Babich, “Butylated hydroxytoluene (BHT): a review,” Environmental Research, vol. 29, no. 1, pp. 1–29, 1982. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Kahl, “Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens,” Toxicology, vol. 33, no. 3-4, pp. 185–228, 1984. View at Scopus
  3. G. M. Williams, M. J. Iatropoulos, and J. Whysner, “Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 1027–1038, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. M. Botterweck, H. Verhagen, R. A. Goldbohm, J. Kleinjans, and P. A. van den Brandt, “Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study,” Food and Chemical Toxicology, vol. 38, no. 7, pp. 599–605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. F. M. Brandao, “Contact dermatitis to ethoxyquin,” Contact Dermatitis, vol. 9, no. 3, article 240, 1983. View at Scopus
  6. C. Savini, R. Morelli, E. Piancastelli, and S. Restani, “Contact dermatitis due to ethoxyquin,” Contact Dermatitis, vol. 21, no. 5, pp. 342–343, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Dzanis, “Safety of ethoxyquin in dog foods,” Journal of Nutrition, vol. 121, no. 11, pp. S163–164, 1991. View at Scopus
  8. K. Alanko, R. Jolanki, T. Estlander, and L. Kanerva, “Occupational 'multivitamin allergy' caused by the antioxidant ethoxyquin,” Contact Dermatitis, vol. 39, no. 5, pp. 263–264, 1998. View at Scopus
  9. A. Rodríguez-Trabado, J. Miró I Balagué, and R. Guspi, “Hypersensitivity to the antioxidant ethoxyquin,” Actas Dermo-Sifiliograficas, vol. 98, no. 8, p. 580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Little, “Ethoxyquin, national toxicology program, executive summary of safety and toxicity information,” Chemical Committee Draft Report, Ethoxyquin CAS Number 91-53-2, 1990, http://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ethoxyquin_508.pdf.
  11. U.S Food and Drug Administration, Animal and Veterinary, “FDA requests that ethoxyquin levels be reduced in dog foods,” 1997, http://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm127828.htm.
  12. A. J. de Koning, “The antioxidant ethoxyquin and its analogues: a review,” International Journal of Food Properties, vol. 5, no. 2, pp. 451–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Drewhurst, “Ethoxyquin. JMPR Evaluations,” 1998, http://www.inchem.org/documents/jmpr/jmpmono/v098pr09.htm.
  14. P. K. Gupta and A. Boobis, “Ethoxyquin (Addendum),” 2005, http://www.inchem.org/documents/jmpr/jmpmono/v2005pr10.pdf.
  15. G. Dorey, B. Lockhart, P. Lestage, and P. Casara, “New quinolinic derivatives as centrally active antioxidants,” Bioorganic & Medicinal Chemistry Letters, vol. 10, no. 9, pp. 935–939, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Błaszczyk, R. Osiecka, and J. Skolimowski, “Induction of chromosome aberrations in cultured human lymphocytes treated with ethoxyquin,” Mutation Research, vol. 542, no. 1-2, pp. 117–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Błaszczyk and J. Skolimowski, “Comparative analysis of cytotoxic, genotoxic and antioxidant effects of 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline and ethoxyquin on human lymphocytes,” Chemico-Biological Interactions, vol. 162, no. 1, pp. 70–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. National Library of Medicine HSDB Database, “Ethoxyquin CASRN: 91-53-2,” 2003, http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@DOCNO+400.
  19. A. Błaszczyk and J. Skolimowski, “Synthesis and studies on antioxidants: ethoxyquin (eq) and its derivatives,” Acta Poloniae Pharmaceutica—Drug Research, vol. 62, no. 2, pp. 111–115, 2005. View at Scopus
  20. A. Hobson Frohock, “Residues of ethoxyquin in poultry tissues and eggs,” Journal of the Science of Food and Agriculture, vol. 33, no. 12, pp. 1269–1274, 1982. View at Scopus
  21. L. T. Burka, J. M. Sanders, and H. B. Matthews, “Comparative metabolism and disposition of ethoxyquin in rat and mouse. II. Metabolism,” Xenobiotica, vol. 26, no. 6, pp. 597–611, 1996. View at Scopus
  22. P. He and R. G. Ackman, “Residues of ethoxyquin and ethoxyquin dimer in ocean-farmed salmonids determined by high-pressure liquid chromatography,” Journal of Food Science, vol. 65, no. 8, pp. 1312–1314, 2000. View at Scopus
  23. V. J. B. Bohne, A. K. Lundebye, and K. Hamre, “Accumulation and depuration of the synthetic antioxidant ethoxyquin in the muscle of Atlantic salmon (Salmo salar L.),” Food and Chemical Toxicology, vol. 46, no. 5, pp. 1834–1843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. K. Lundebye, H. Hove, A. Måge, V. J. B. Bohne, and K. Hamre, “Levels of synthetic antioxidants (ethoxyquin, butylated hydroxytoluene and butylated hydroxyanisole) in fish feed and commercially farmed fish,” Food Additives and Contaminants A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 27, no. 12, pp. 1652–1657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. JMPR, “Pesticide residues in food—2005. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues,” JMPR Report, Ethoxyquin 035, 2005, http://www.fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/99_eva/14Ethoxyquin.pdf.
  26. V. J. Berdikova Bohne, H. Hove, and K. Hamre, “Simultaneous quantitative determination of the synthetic antioxidant ethoxyquin and its major metabolite in atlantic salmon (Salmo salar, L), ethoxyquin dimer, by reversed-phase high-performance liquid chromatography with fluorescence detection,” Journal of AOAC International, vol. 90, no. 2, pp. 587–597, 2007. View at Scopus
  27. J. U. Skaare and S. O. Roald, “Ethoxyquin (EMQ) residues in Atlantic salmon measured by fluorimetry and gas chromatography (GLC),” Nordisk Veterinaermedicin, vol. 29, no. 4-5, pp. 232–236, 1977. View at Scopus
  28. V. J. B. Bohne, K. Hamre, and A. Arukwe, “Hepatic biotransformation and metabolite profile during a 2-week depuration period in Atlantic Salmon fed graded levels of the synthetic antioxidant, ethoxyquin,” Toxicological Sciences, vol. 93, no. 1, pp. 11–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. J. B. Bohne, K. Hamre, and A. Arukwe, “Hepatic metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo Salar, L) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 733–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. D. Bucheli and K. Fent, “Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems,” Critical Reviews in Environmental Science and Technology, vol. 25, no. 3, pp. 201–268, 1995. View at Scopus
  31. A. Arukwe, L. Förlin, and A. Goksøyr, “Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (Salmo salar) liver treated with an estrogenic compound, 4-nonylphenol,” Environmental Toxicology and Chemistry, vol. 16, no. 12, pp. 2576–2583, 1997. View at Scopus
  32. T. M. Buetler, E. P. Gallagher, C. Wang, D. L. Stahl, J. D. Hayes, and D. L. Eaton, “Induction of phase I and phase II drug-detabolizing enzyme mRNA, protein, and activity by BHA, ethoxyquin, and oltipraz,” Toxicology and Applied Pharmacology, vol. 135, no. 1, pp. 45–57, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. J. D. Hayes, D. J. Pulford, E. M. Ellis et al., “Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1,” Chemico-Biological Interactions, vol. 111-112, pp. 51–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. K. L. Henson, G. Stauffer, and E. P. Gallagher, “Induction of glutathione S-transferase activity and protein expression in brown bullhead(Ameiurus nebulosus) liver by ethoxyquin,” Toxicological Sciences, vol. 62, no. 1, pp. 54–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. T. K. Bammler, D. H. Slone, and D. L. Eaton, “Effects of dietary oltipraz and ethoxyquin on aflatoxin B1 biotransformation in non-human primates,” Toxicological Sciences, vol. 54, no. 1, pp. 30–41, 2000. View at Scopus
  36. R. Kahl, “Elevation of hepatic epoxide hydratase activity by ethoxyquin is due to increased synthesis of the enzyme,” Biochemical and Biophysical Research Communications, vol. 95, no. 1, pp. 163–169, 1980. View at Scopus
  37. R. Ørnsrud, A. Arukwe, V. Bohne, N. Pavlikova, and A. K. Lundebye, “Investigations on the metabolism and potentially adverse effects of ethoxyquin dimer, a major metabolite of the synthetic antioxidant ethoxyquin in salmon muscle,” Journal of Food Protection, vol. 74, pp. 1574–1580, 2011.
  38. L. Taimr, M. Prusikova, and J. Pospisil, “Antioxidants and stabilizers. 113. Oxidation-products of the antidegradant ethoxyquin,” Angewandte Makromolekulare Chemie, vol. 190, pp. 53–65, 1991. View at Publisher · View at Google Scholar
  39. L. Taimr, “Study of the mechanism of the antioxidant action of ethoxyquin,” Angewandte Makromolekulare Chemie, vol. 217, pp. 119–128, 1994. View at Publisher · View at Google Scholar
  40. C. Lauridsen, K. Jakobsen, and T. K. Hansen, “The influence of dietary ethoxyquin on the vitamin E status in broilers,” Archiv fur Tierernahrung, vol. 47, no. 3, pp. 245–254, 1995. View at Scopus
  41. D. R. Brannegan, Analysis of ethoxyquin and its oxidation products using supercritical fluid extraction and high performance liquid chromatography with chemiluminescent nitrogen detection [thesis], Faculty of the Virginia Polytechnic, Institute and State University in Partial Fulfillment of the Requirements of the Degree of Master of Science in Chemistry, 2000, http://scholar.lib.vt.edu/theses/available/etd-03302000-20440044/.
  42. L. Taimr, M. Smelhausova, and M. Prusikova, “The reaction of 1-cyano-1-methylethyl radical with antidegradant ethoxyquin and its aminyl and nitroxide derivatives,” Angewandte Makromolekulare Chemie, vol. 206, pp. 199–207, 1993. View at Publisher · View at Google Scholar
  43. A. J. de Koning and G. van der Merwe, “Determination of ethoxyquin and two of its oxidation products in fish meal by gas chromatography,” The Analyst, vol. 117, no. 10, pp. 1571–1576, 1992. View at Scopus
  44. P. He and R. G. Ackman, “HPLC determination of ethoxyquin and its major oxidation products in fresh and stored fish meals and fish feeds,” Journal of the Science of Food and Agriculture, vol. 80, pp. 10–16, 2000. View at Publisher · View at Google Scholar
  45. S. Thorisson, F. Gunstone, and R. Hardy, “The antioxidant properties of ethoxyquin and of some of its oxidation products in fish oil and meal,” Journal of the American Oil Chemists' Society, vol. 69, pp. 806–809, 1992. View at Publisher · View at Google Scholar
  46. P. He and R. G. Ackman, “Purification of ethoxyquin and its two oxidation products,” Journal of Agricultural and Food Chemistry, vol. 48, no. 8, pp. 3069–3071, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. H. W. Renner, “Antimutagenic effect of an antioxidant in mammals,” Mutation Research, vol. 135, no. 2, pp. 125–129, 1984. View at Scopus
  48. H. W. Renner and M. Knoll, “Antimutagenic effects on male germ cells of mice,” Mutation Research, vol. 140, no. 2-3, pp. 127–129, 1984. View at Scopus
  49. D. Guyonnet, C. Belloir, M. Suschetet, M. H. Siess, and A. M. Le Bon, “Antimutagenic activity of organosulfur compounds from Allium is associated with phase II enzyme induction,” Mutation Research, vol. 495, no. 1-2, pp. 135–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Stankiewicz, E. Skrzydlewska, and M. Makieła, “Effects of amifostine on liver oxidative stress caused by cyclophosphamide administration to rats,” Drug Metabolism and Drug Interactions, vol. 19, no. 2, pp. 67–82, 2002. View at Scopus
  51. S. Ray, B. Pandit, S. D. Ray, S. Das, and S. Chakraborty, “Cyclophosphamide induced lipid peroxidation and changes in cholesterol content: protective role of reduced glutathione,” International Journal of PharmTech Research, vol. 2, no. 1, pp. 704–718, 2010. View at Scopus
  52. J. R. P. Cabral and G. E. Neal, “The inhibitory effects of ethoxyquin on the carcinogenic action of aflatoxin B1 in rats,” Cancer Letters, vol. 19, no. 2, pp. 125–132, 1983. View at Scopus
  53. M. M. Manson, J. A. Green, and H. E. Driver, “Ethoxyquin alone induces preneoplastic changes in rat kidney whilst preventing induction of such lesions in liver by aflatoxin B1,” Carcinogenesis, vol. 8, no. 5, pp. 723–728, 1987. View at Scopus
  54. E. A. Decker, “Phenolics: prooxidants or antioxidants?” Nutrition Reviews, vol. 55, no. 11, pp. 396–398, 1997. View at Scopus
  55. Y. Sakihama, M. F. Cohen, S. C. Grace, and H. Yamasaki, “Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants,” Toxicology, vol. 177, no. 1, pp. 67–80, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. J. U. Skaare and T. Henriksen, “Free-radical formation in antioxidant ethoxyquin,” Journal of the Science of Food and Agriculture, vol. 26, pp. 1647–1654, 1975. View at Publisher · View at Google Scholar
  57. C. S. Wilcox and A. Pearlman, “Chemistry and antihypertensive effects of tempol and other nitroxides,” Pharmacological Reviews, vol. 60, no. 4, pp. 418–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. G. H. McIntosh, J. S. Charnock, P. H. Phillips, and G. J. Baxter, “Acute intoxication of marmosets and rats fed high concentrations of the dietary antioxidant "ethoxyquin 66",” Australian Veterinary Journal, vol. 63, no. 11, pp. 385–386, 1986. View at Scopus
  59. N. Ito, S. Fukushima, and H. Tsuda, “Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants,” Critical Reviews in Toxicology, vol. 15, no. 2, pp. 109–150, 1985. View at Scopus
  60. Y. Yamashita, T. Katagiri, N. Pirarat, K. Futami, M. Endo, and M. Maita, “The synthetic antioxidant, ethoxyquin, adversely affects immunity in tilapia (Oreochromis niloticus),” Aquaculture Nutrition, vol. 15, no. 2, pp. 144–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. E. Neal, D. J. Judah, G. G. Hard, and N. Ito, “Differences in ethoxyquin nephrotoxicity between male and female F344 rats,” Food and Chemical Toxicology, vol. 41, no. 2, pp. 193–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. V. Y. Leong and T. P. Brown, “Toxicosis in broiler chicks due to excess dietary ethoxyquin,” Avian Diseases, vol. 36, no. 4, pp. 1102–1106, 1992. View at Scopus
  63. J. Wang, Q. Ai, K. Mai et al., “Effects of dietary ethoxyquin on growth performance and body composition of large yellow croaker Pseudosciaena crocea,” Aquaculture, vol. 306, no. 1–4, pp. 80–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Hernandez, J. L. Reyes, C. Gomez-Lojero, M. S. Sayavedra, and E. Melendez, “Inhibition of the renal uptake of p-aminohippurate and tetraethylammonium by the antioxidant ethoxyquin in the rat,” Food and Chemical Toxicology, vol. 31, no. 5, pp. 363–367, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. J. L. Reyes, M. Elisabeth Hernández, E. Meléndez, and C. Gómez-Lojero, “Inhibitory effect of the antioxidant ethoxyquin on electron transport in the mitochondrial respiratory chain,” Biochemical Pharmacology, vol. 49, no. 3, pp. 283–289, 1995. View at Publisher · View at Google Scholar · View at Scopus
  66. P. E. Joner, “Butylhydroxyanisol (BHA), butylhydroxytoluene (BHT) and ethoxyquin (EMQ) tested for mutagenicity,” Acta Veterinaria Scandinavica, vol. 18, no. 2, pp. 187–193, 1977. View at Scopus
  67. T. Ohta, M. Moriya, Y. Kaneda, et al., “Mutagenicity screening of feed additives in the microbial system,” Mutation Research, vol. 77, no. 1, pp. 21–30, 1980. View at Scopus
  68. E. Zeiger, “Mutagenicity of chemicals added to foods,” Mutation Research, vol. 290, no. 1, pp. 53–61, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Rannug, U. Rannug, and C. Ramel, “Genotoxic effects of additives in synthetic elastomers with special consideration to the mechanism of action of thiurams and dithiocarbamates,” Progress in Clinical and Biological Research, vol. 141, pp. 407–419, 1984. View at Scopus
  70. B. S. Reddy, D. Hanson, L. Mathews, and C. Sharma, “Effect of micronutrients, antioxidants and related compounds on the mutagenicity of 3,2'-dimethyl-4-aminobiphenyl, a colon and breast carcinogen,” Food and Chemical Toxicology, vol. 21, no. 2, pp. 129–132, 1983. View at Scopus
  71. A. Błaszczyk and J. Skolimowski, “Apoptosis and cytotoxicity caused by ethoxyquin and two of its salts,” Cellular and Molecular Biology Letters, vol. 10, no. 1, pp. 15–21, 2005. View at Scopus
  72. A. Błaszczyk, “DNA damage induced by ethoxyquin in human peripheral lymphocytes,” Toxicology Letters, vol. 163, no. 1, pp. 77–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J. J. Skolimowski, B. Cieślińska, M. Zak, R. Osiecka, and A. Błaszczyk, “Modulation of ethoxyquin genotoxicity by free radical scavengers and DNA damage repair in human lymphocytes,” Toxicology Letters, vol. 193, no. 2, pp. 194–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. J. P. Gille, P. Pasman, C. G. M. van Berkel, and H. Joenje, “Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine,” Mutagenesis, vol. 6, no. 4, pp. 313–318, 1991. View at Scopus
  75. T. H. Rabbitts, “Chromosomal translocations in human cancer,” Nature, vol. 372, no. 6502, pp. 143–149, 1994. View at Publisher · View at Google Scholar · View at Scopus
  76. A. J. de Koning, “An antioxidant for fish meal,” Republic of South Africa Patent, 970894, 1997.
  77. National Toxicology Program (NTP), Toxicology and Carcinogenesis Studies of 1,2-Dihydro-2,2,4-Trimethylquinoline (CAS no. 147-47-7) in F344/N Rats and B6C3DF1mice (Dermal Studies) and the Initiation/Promotion (Dermal Study) in Female Sencar Mice, Technical Report Series no. 456, U.S. Department of Health and Human Services, 1997, http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr456.pdf.
  78. K. Sitarek and A. Sapota, “Maternal-fetal distribution and prenatal toxicity of 2,2,4-trimethyl-1,2-dihydroquinoline in the rat,” Birth Defects Research Part B—Developmental and Reproductive Toxicology, vol. 68, no. 4, pp. 375–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Błaszczyk, J. Skolimowski, and A. Materac, “Genotoxic and antioxidant activities of ethoxyquin salts evaluated by the comet assay,” Chemico-Biological Interactions, vol. 162, no. 3, pp. 268–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Błaszczyk and J. Skolimowski, “Apoptosis and cytotoxicity caused by ethoxyquin salts in human lymphocytes in vitro,” Food Chemistry, vol. 105, no. 3, pp. 1159–1163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Błaszczyk and J. Skolimowski, “Evaluation of the genotoxic and antioxidant effects of two novel feed additives (ethoxyquin complexes with flavonoids) by the comet assay and micronucleus test,” Food Additives and Contaminants, vol. 24, no. 6, pp. 553–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Błaszczyk and J. Skolimowski, “Preparation of ethoxyquin salts and their genotoxic and antioxidant effects on human lymphocytes,” Arkivoc, vol. 2007, no. 6, pp. 217–229, 2007. View at Scopus
  83. A. Augustyniak, A. Niezgoda, J. Skolimowski, R. Kontek, and A. Błaszczyk, “Cytotoxicity and genotoxicity of ethoxyquin dimers,” Bromatologia i Chemia Toksykologiczna, vol. 45, pp. 228–234, 2012.
  84. Y. Aoki, A. Kotani, N. Miyazawa et al., “Determination of ethoxyquin by high-performance liquid chromatography with fluorescence detection and its application to the survey of residues in food products of animal origin,” Journal of AOAC International, vol. 93, no. 1, pp. 277–283, 2010. View at Scopus