About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 792357, 5 pages
http://dx.doi.org/10.1155/2013/792357
Research Article

RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

Institute for Solar Energy Systems, School of Engineering, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China

Received 30 October 2012; Revised 18 December 2012; Accepted 26 December 2012

Academic Editor: Ho Chang

Copyright © 2013 Siming Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. T. Liang, “Technology of Semiconductor Device Surface Passivation,” 1979.
  2. G. Agostinelli, A. Delabie, P. Vitanov et al., “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 3438–3443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” Journal of Applied Physics, vol. 104, Article ID 113703, 7 pages, 2008. View at Publisher · View at Google Scholar
  4. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 461–466, 2008.
  5. G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels, “Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition,” Journal of Applied Physics, vol. 110, Article ID 093715, 6 pages, 2011. View at Publisher · View at Google Scholar
  6. S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai, “Hydrogenated aluminium oxide films deposited by plasma enhanced chemical vapor deposition for passivation of p-type crystalline silicon,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, pp. 1029–1032, Valencia, Spain, September 2008.
  7. T. T. Li and A. Cuevas, “Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide,” Physica Status Solidi RRL, vol. 3, p. 16, 2009.
  8. G. Dingemans and W. M. M. Kessels, “Recent progress in the development and understanding of silicon surface passivation by aluminum oxide for photovoltaics,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference, pp. 1083–1090, Valencia, Spain, September 2010.
  9. T. T. Li, S. Ruffell, M. Tucci, et al., “Influence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon,” Solar Energy Materials & Solar Cells, vol. 95, no. 1, pp. 69–72, 2011.
  10. T. T. Li and A. Cuevas, “Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide,” Progress in Photovoltaics: Research and Applications, vol. 19, pp. 320–325, 2011.
  11. J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters,” Applied Physics Letters, vol. 92, Article ID 253504, 3 pages, 2008. View at Publisher · View at Google Scholar
  12. A. Cuevas, A. Li, F. Roozeboom, et al., Photovoltaics International, 10th edition, 2010.
  13. F. Werner, W. Stals, R. Görtzen, B. Veith, R. Brendel, and J. Schmidt, “High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells,” Energy Procedia, vol. 8, pp. 301–306, 2010.