About this Journal Submit a Manuscript Table of Contents
International Journal of Photoenergy
Volume 2013 (2013), Article ID 829463, 6 pages
http://dx.doi.org/10.1155/2013/829463
Research Article

Silver Nanoparticle-Doped Titanium Oxide Thin Films for Intermediate Layers in Organic Tandem Solar Cell

Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA

Received 25 September 2012; Accepted 31 December 2012

Academic Editor: K. N. Narayanan Unni

Copyright © 2013 Wanyi Nie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Liang, Z. Xu, J. Xia et al., “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, vol. 22, no. 20, pp. E135–E138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. He, C. Zhong, X. Huang, et al., “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells,” Advanced Materials, vol. 23, no. 40, pp. 4636–4643, 2011. View at Publisher · View at Google Scholar
  3. T. Y. Chu, J. Lu, S. Beaupré et al., “Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2- b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%,” Journal of the American Chemical Society, vol. 133, no. 12, pp. 4250–4253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. J. Son, W. Wang, T. Xu et al., “Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties,” Journal of the American Chemical Society, vol. 133, no. 6, pp. 1885–1894, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Fréchet, “Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells,” Journal of the American Chemical Society, vol. 132, no. 22, pp. 7595–7597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. J. Zhao, Y. J. He, and Y. Li, “6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,” Advanced Materials, vol. 22, no. 39, pp. 4355–4358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Schlinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Applied Physics Letters, vol. 81, no. 20, p. 3885, 2002. View at Publisher · View at Google Scholar
  8. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” Journal of Materials Research, vol. 19, no. 7, pp. 1924–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Gunes, H. Neugebauer, and N. Serdar Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, vol. 107, pp. 1324–1338, 2007. View at Publisher · View at Google Scholar
  10. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: a review,” Energy and Environmental Science, vol. 2, no. 4, pp. 347–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Yakimov and S. R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters,” Applied Physics Letters, vol. 80, no. 9, p. 1667, 2002. View at Publisher · View at Google Scholar
  12. M. Hiramoto, M. Suezaki, and M. Yokoyama, “Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell,” Chemistry Letters, vol. 19, pp. 327–330, 1990.
  13. D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, “Efficient tandem organic solar cells with an Al/MoO3 intermediate layer,” Applied Physics Letters, vol. 93, Article ID 083305, 2009. View at Publisher · View at Google Scholar
  14. J. Sakai, K. Kawano, T. Yamanari et al., “Efficient organic photovoltaic tandem cells with novel transparent conductive oxide interlayer and poly (3-hexylthiophene): fullerene active layers,” Solar Energy Materials and Solar Cells, vol. 94, no. 2, pp. 376–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Y. Kim, K. Lee, N. E. Coates et al., “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, vol. 317, no. 5835, pp. 222–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Double and triple junction polymer solar cells processed from solution,” Applied Physics Letters, vol. 90, no. 14, Article ID 143512, 2007. View at Publisher · View at Google Scholar
  17. S. Sista, M. H. Park, Z. Hong et al., “Highly efficient tandem polymer photovoltaic cells,” Advanced Materials, vol. 22, no. 3, pp. 380–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Chung, H. Lee, W. Lee et al., “Solution processed polymer tandem cell utilizing organic layer coated nano-crystalline TiO2 as interlayer,” Organic Electronics, vol. 11, pp. 521–528, 2010. View at Publisher · View at Google Scholar
  19. F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material,” Applied Physics Letters, vol. 89, no. 10, Article ID 102103, 2006. View at Publisher · View at Google Scholar
  20. A. K. Pandey, J. M. Nunzi, H. Wang et al., “Reverse biased annealing: effective post treatment tool for polymer/nano-composite solar cells,” Organic Electronics, vol. 8, no. 4, pp. 396–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zaleska, “Doped-TiO2: a review,” Recent Patents on Engineering, vol. 2, no. 3, pp. 157–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. K. Seery, R. George, P. Floris, and S. C. Pillai, “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 189, no. 2-3, pp. 258–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Liu and J. M. Nunzi, “Air stable hybrid inverted tandem solar cell design,” Applied Physics Letters, vol. 99, no. 6, Article ID 063301, 2011. View at Publisher · View at Google Scholar
  24. P. V. Kamat, I. Bedja, and S. Hotchandanit, “Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions,” The Journal of Physical Chemistry, vol. 98, pp. 9137–9142, 1994. View at Publisher · View at Google Scholar
  25. A. Zaban, S. Ferrere, J. Sprague, and B. A. Gregg, “pH-dependent redox potential induced in a sensitizing dye by adsorption onto TiO2,” Journal of Physical Chemistry B, vol. 101, no. 1, pp. 55–57, 1997. View at Scopus
  26. B. E. Yoldas, “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters,” Journal of Materials Science, vol. 21, no. 3, pp. 1087–1092, 1986. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying, “Role of particle size in nanocrystalline TiOi-based photocatalysts,” Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871–10878, 1998. View at Scopus
  28. H. Sakai, H. Kawahara, M. Shimazaki, and M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition,” Langmuir, vol. 14, no. 8, pp. 2208–2211, 1998. View at Scopus
  29. J. Y. Kim, S. H. Kim, H. H. Lee et al., “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Advanced Materials, vol. 18, no. 5, pp. 572–576, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Yuan, J. Huang, and G. Li, “Intermediate layers in tandem organic solar cells,” Green, vol. 1, pp. 65–80, 2011.