About this Journal Submit a Manuscript Table of Contents
International Journal of Reconfigurable Computing
Volume 2011 (2011), Article ID 425401, 15 pages
http://dx.doi.org/10.1155/2011/425401
Research Article

AADL Extension to Model Classical FPGA and FPGA Embedded within a SoC

1Lab-STICC/CNRS UMR3192, Université de Bretagne-Sud, Centre de recherche, BP 92116, 56321 Lorient Cedex, France
2Cairn Inria/Irisa, Université de Rennes 1, ENSSAT, 6 rue de Kerampont, BP 80518, 22305 Lannion, France
3Leat/CNRS UMR6071, Université de Nice-Sophia Antipolis, 250 rue Albert Einstein, Bt. 4, 06560 Valbonne, France
4InPixal, Immeuble “Le Germanium”, 80 avenue des Buttes de Cosmes, 35700 Rennes, France

Received 26 November 2010; Revised 23 March 2011; Accepted 25 May 2011

Academic Editor: Koen L. M. Bertels

Copyright © 2011 Dominique Blouin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper: enhanced architectures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAS,” in Proceedings of the International Conference on Field Programmable Logic and Applications (FPL '06), pp. 1–6, 2006. View at Publisher · View at Google Scholar
  2. “Model driven engineering, planet mde, portal of the model driven engineering community,” 2008, http://planet-mde.org/.
  3. “The Open-PEOPLE Project Website,” 2009, http://www.open-people.fr/.
  4. “Unified modeling language, omg,” 2008, http://www.uml.org/.
  5. L. Rioux, T. Saunier, S. Gerard et al., “MARTE: a new profile RFP for the modeling and analysis of real-time embedded systems,” in Proceedings of the UML for SoC Design Workshop at (DAC '05), 2005.
  6. S. Cherif, I. R. Quadri, S. Meftali, and J.-L. Dekeyser, “Modeling reconfigurable Systems-on-Chips with UML MARTE profile: an exploratory analysis,” in Proceedings of the 13th Euromicro Conference on Digital System Design (DSD '10), Lille, France, September 2010.
  7. J. Vidal, F. De Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard, “UML design for dynamically reconfigurable multiprocessor embedded systems,” in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE '10), pp. 1195–1200, IEEE, 2010.
  8. “Systems modeling language, omg,” 2008, http://www.omgsysml.org/.
  9. J. Lallet, S. Pillement, and O. Sentieys, “xMAML: a modeling language for dynamically reconfigurable architectures,” in Proceedings of the Digital System Design, Architectures, Methods and Tools (DSD '09), pp. 680–687, IEEE, Patras, Greece, august 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Fischer, J. Teich, R. Weper, U. Kastens, and M. Thies, “Design space characterization for architecture/compiler co-exploration,” in Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES '01), pp. 108–115, ACM, New York, NY, USA, 2001.
  11. S. Sendall and W. Kozaczynski, “Model transformation: the heart and soul of model-driven software development,” IEEE Software, vol. 20, no. 5, pp. 42–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real time scheduling framework,” in Proceedings of the Annual ACM SIGAda International Conference on Ada: The Engineering of Correct and Reliable Software for Real-Time & Distributed Systems Using Ada and Related Technologies, pp. 1–8, ACM, 2004.
  13. G. Harbour, G. Garcia, P. Gutierrez, D. Moyano, et al., “MAST: modeling and analysis suite for real time applications,” in Proceedings of the 13th Euromicro Conference on Real-Time Systems, pp. 125–134, IEEE, 2002.
  14. B. Berthomieu, J. P. Bodeveix, P. Farail et al., “Fiacre: an intermediate language for model verification in the topcased environment,” in Proceedings of the 4th European Congress on Embedded Real-Time Software (ERTS '08), Toulouse, France, 2008.
  15. B. Berthomieu, P. O. Ribet, and F. Vernadat, “The tool TINA—Construction of abstract state spaces for petri nets and time petri nets,” International Journal of Production Research, vol. 42, no. 14, pp. 2741–2756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Varona-Gómez and E. Villar, “AADS: AADL simulation and performance analysis in systemC,” in Proceedings of the IEEE/ACM Design, Automation and Test in Europe, 2009.
  17. J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the prototype to the final embedded system using the Ocarina AADL tool suite,” ACM Transactions on Embedded Computing Systems, vol. 7, no. 4, pp. 1–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Piel, R. B. Attitalah, P. Marquet et al., “Gaspard2: from MARTE to systemC simulation,” in Proceedings of the Modeling and Analyzis of Real-Time and Embedded Systems with the MARTE UML Profile (DATE '09), vol. 8, 2009.
  19. “Architecture analysis & design language (aadl), version 2,” January 2010, http://standards.sae.org/as5506a/.
  20. O. Gilles and J. Hugues, “Expressing and enforcing user-defined constraints of AADL models,” in Proceedings of the 5th UML and AADL Workshop, UML and AADL, 2010.