About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 659872, 17 pages
http://dx.doi.org/10.1155/2012/659872
Research Article

Nonlinear Dynamics of an Electrorheological Sandwich Beam with Rotary Oscillation

1Department of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411101, China
2State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

Received 29 August 2012; Accepted 28 November 2012

Academic Editor: Vasile Marinca

Copyright © 2012 Kexiang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Chung and H. H. Yoo, “Dynamic analysis of a rotating cantilever beam by using the finite element method,” Journal of Sound and Vibration, vol. 249, no. 1, pp. 147–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Al-Qaisia, “Dynamics of a rotating beam with flexible root and flexible hub,” Structural Engineering and Mechanics, vol. 30, no. 4, pp. 427–444, 2008. View at Scopus
  3. S. Y. Lee, S. M. Lin, and Y. S. Lin, “Instability and vibration of a rotating Timoshenko beam with precone,” International Journal of Mechanical Sciences, vol. 51, no. 2, pp. 114–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Arvin and F. Bakhtiari-Nejad, “Non-linear modal analysis of a rotating beam,” International Journal of Non-Linear Mechanics, vol. 46, no. 6, pp. 877–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. A. H. Abbas, “Dynamic stability of a rotating Timoshenko beam with a flexible root,” Journal of Sound and Vibration, vol. 108, no. 1, pp. 25–32, 1986. View at Scopus
  6. T. H. Young and T. M. Lin, “Stability of rotating pretwisted, tapered beams with randomly varying speeds,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 120, no. 3, pp. 784–790, 1998. View at Scopus
  7. S. C. Sinha, D. B. Marghitu, and D. Boghiu, “Stability and control of a parametrically excited rotating beam,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 120, no. 4, pp. 462–469, 1998. View at Scopus
  8. J. Chung, D. Jung, and H. H. Yoo, “Stability analysis for the flapwise motion of a cantilever beam with rotary oscillation,” Journal of Sound and Vibration, vol. 273, no. 4-5, pp. 1047–1062, 2004. View at Scopus
  9. O. Turhan and G. Bulut, “Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed,” Journal of Sound and Vibration, vol. 280, no. 3–5, pp. 945–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Younesian and E. Esmailzadeh, “Non-linear vibration of variable speed rotating viscoelastic beams,” Nonlinear Dynamics, vol. 60, no. 1-2, pp. 193–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Wei, G. Meng, W. Zhang, and S. Zhou, “Vibration characteristics of rotating sandwich beams filled with electrorheological fluids,” Journal of Intelligent Material Systems and Structures, vol. 18, no. 11, pp. 1165–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. V. Gandhi, B. S. Thompson, and S. B. Choi, “A new generation of innovative ultra-advanced intelligent composite materials featuring electro-rheological fluids: an experimental investigation,” Journal of Composite Materials, vol. 23, no. 12, pp. 1232–1255, 1989. View at Publisher · View at Google Scholar
  13. C. Y. Lee and C. C. Cheng, “Dynamic characteristics of sandwich beam with embedded electro-rheological fluid,” Journal of Intelligent Material Systems and Structures, vol. 9, no. 1, pp. 60–68, 1998. View at Scopus
  14. T. Fukuda, T. Takawa, and K. Nakashima, “Optimum vibration control of CFRP sandwich beam using electro-rheological fluids and piezoceramic actuators,” Smart Materials and Structures, vol. 9, no. 1, pp. 121–125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. B. Choi, “Electric field-dependent vibration characteristics of a plate featuring an electrorheological fluid,” Journal of Sound and Vibration, vol. 234, no. 4, pp. 705–712, 2000. View at Publisher · View at Google Scholar
  16. J. Y. Yeh, L. W. Chen, and C. C. Wang, “Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core,” Composite Structures, vol. 64, no. 1, pp. 47–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. F. Yeh and Y. S. Shih, “Critical load, dynamic characteristics and parametric instability of electrorheological material-based adaptive beams,” Computers and Structures, vol. 83, no. 25-26, pp. 2162–2174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. X. Wei, G. Meng, S. Zhou, and J. Liu, “Vibration control of variable speed/acceleration rotating beams using smart materials,” Journal of Sound and Vibration, vol. 298, no. 4-5, pp. 1150–1158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Yalcintas and J. P. Coulter, “Electrorheological material based adaptive beams subjected to various boundary conditions,” Journal of Intelligent Material Systems and Structures, vol. 6, no. 5, pp. 700–717, 1995. View at Scopus
  20. M. Yalcintas and J. P. Coulter, “Electrorheological material based non-homogeneous adaptive beams,” Smart Materials and Structures, vol. 7, no. 1, pp. 128–143, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. E. H. K. Fung and D. T. W. Yau, “Vibration characteristics of a rotating flexible arm with ACLD treatment,” Journal of Sound and Vibration, vol. 269, no. 1-2, pp. 165–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Saito and K. Otomi, “Parametric response of viscoelastically supported beams,” Journal of Sound and Vibration, vol. 63, no. 2, pp. 169–178, 1979. View at Scopus
  23. H. H. Yoo and S. H. Shin, “Vibration analysis of rotating cantilever beams,” Journal of Sound and Vibration, vol. 212, no. 5, pp. 807–808, 1998. View at Scopus
  24. H. Y. Hu, Applied Nonlinear Dynamics, Press of Aeronautical Industries, Beijing, China, 2000.
  25. T. H. Tan, H. P. Lee, and G. S. B. Leng, “Parametric instability of spinning pretwisted beams subjected to spin speed perturbation,” Computer Methods in Applied Mechanics and Engineering, vol. 148, no. 1-2, pp. 139–163, 1997. View at Scopus
  26. C. Y. Lin and L. W. Chen, “Dynamic stability of a rotating beam with a constrained damping layer,” Journal of Sound and Vibration, vol. 267, no. 2, pp. 209–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Don, An investigation of electrorheological material adaptive structure [M.S. thesis], Lehigh University, Bethlehem, Pa, USA, 1993.