About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 434636, 12 pages
http://dx.doi.org/10.1155/2013/434636
Research Article

Antioptimisation of Trusses Using Two-Level Population-Based Incremental Learning

Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

Received 14 December 2012; Accepted 18 March 2013

Academic Editor: Xiaojun Wang

Copyright © 2013 Phinit Tontragunrat and Sujin Bureerat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kaveh and S. Talatahari, “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. B. Thanedar, J. S. Arora, C. H. Tseng, O. K. Lim, and G. J. Park, “Performance of some SQP algorithms on structural design problems,” International Journal for Numerical Methods in Engineering, vol. 23, no. 12, pp. 2187–2203, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. A. Kaveh and S. Talatahari, “Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures,” Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. M. Gomes, “Truss optimization with dynamic constraints using a particle swarm algorithm,” Expert Systems with Applications, vol. 38, no. 1, pp. 957–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. W. A. Bennage and A. K. Dhingra, “Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing,” International Journal for Numerical Methods in Engineering, vol. 38, no. 16, pp. 2753–2773, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. N. Pholdee and S. Bureerat, “Performance enhancement of multiobjective evolutionary optimizers for truss design using an approximate gradient,” Computers and Structures, vol. 106-107, pp. 115–124, 2012. View at Publisher · View at Google Scholar
  7. C. Noilublao and S. Bureerat, “Topology and sizing optimization of trusses with adaptive ground finite elements using multiobjective PBIL,” Advanced Materials Research, vol. 308–310, pp. 1116–1121, 2011.
  8. N. Noilublao and S. Bureerat, “Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms,” Computers and Structures, vol. 89, pp. 2531–2538, 2011. View at Publisher · View at Google Scholar
  9. B. M. Adams, M. S. Eldred, and J. W. Wittwer, “Reliability-based design optimization for shape design of compliant micro-electro-mechanical systems,” in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 1042–1056, AIAA, September 2006. View at Scopus
  10. K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall, and D. Padmanabhan, “Reliability-based optimization using evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1054–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Lombardi and R. T. Haftka, “Anti-optimization technique for structural design under load uncertainties,” Computer Methods in Applied Mechanics and Engineering, vol. 157, no. 1-2, pp. 19–31, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. G. Venter and R. T. Haftka, “Two-species genetic algorithm for design under worst case conditions,” Evolutionary Optimization, vol. 2, no. 1, pp. 1–19, 2000.
  13. N. Wang and Y. Yang, “Optimization of structures under load uncertainties based on hybrid genetic algorithm,” in Evolutionary Computation, W. P. dos Santos, Ed., pp. 321–340, I-Tech, Vienna, Austria, 2009.
  14. A. R. Yıldız, “A novel hybrid immune algorithm for global optimization in design and manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 261–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Durgun and A. R. Yıldız, “Structural design optimization of vehicle components using cuckoo search algorithm,” Materials Testing, vol. 54, no. 3, pp. 185–188, 2012.
  16. S. L. Tilahun and H. C. Ong, “Modified firefly algorithm,” Journal of Applied Mathematics, vol. 2012, Article ID 467631, 12 pages, 2012.
  17. X. Cai, S. Fan, and Y. Tan, “Light responsive curve selection for photosynthesis operator of APOA,” International Journal of Bio-Inspired Computation, vol. 4, no. 6, pp. 373–379, 2012. View at Publisher · View at Google Scholar
  18. Z. Cui, F. Gao, Z. Cui, and J. Qu, “A second nearest-neighbor embedded atom method interatomic potential for Li-Si Alloys,” Journal of Power Sources, vol. 207, p. 150, 2012. View at Publisher · View at Google Scholar
  19. S. Baluja, “Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning,” Tech. Rep. CMU_CS_95_163, Carnegie Mellon University, 1994.
  20. Z. Qiu and X. Wang, “Structural anti-optimization with interval design parameters,” Structural and Multidisciplinary Optimization, vol. 41, no. 3, pp. 397–406, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  21. F. Y. Cheng and D. Li, “Fuzzy set theory with genetic algorithm in constrained structural optimization,” in Proceedings of the 1st US-Japan Joint Seminar on Structural Optimization, pp. 55–66, Advances in Structural optimization, April 1997. View at Scopus