About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 404536, 7 pages
http://dx.doi.org/10.1155/2012/404536
Research Article

The Effect of Nanoparticle Size on Cellular Binding Probability

1The Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
2Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel

Received 12 March 2012; Accepted 9 April 2012

Academic Editor: Zeev Zalevsky

Copyright © 2012 Vital Peretz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Rusinek, D. P. Naidich, G. McGuinness et al., “Pulmonary nodule detection: low-dose versus conventional CT,” Radiology, vol. 209, no. 1, pp. 243–249, 1998. View at Scopus
  2. R. Lamerichs, “MRI-based molecular imaging using nano-particles,” Cellular Oncology, vol. 30, no. 2, p. 100, 2008.
  3. C. Sun, O. Veiseh, J. Gunn et al., “In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes,” Small, vol. 4, no. 3, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Kopelman, Y. E. Lee Koo, M. Philbert et al., “Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 404–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. E. L. Koo, G. R. Reddy, M. Bhojani et al., “Brain cancer diagnosis and therapy with nanoplatforms,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1556–1577, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Neubauer, H. Sim, P. M. Winter et al., “Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 60, no. 6, pp. 1353–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. X. H. Gao and S. M. Nie, “Long-circulating QD probes for in-vivo tumor imaging,” Nanosensing: Materials and Devices, vol. 5593, pp. 292–299, 2004.
  8. P. Diagaradjane, J. M. Orenstein-Cardona, N. E. Colón-Casasnovas et al., “Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe,” Clinical Cancer Research, vol. 14, no. 3, pp. 731–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Guo, D. Shi, J. Lian et al., “Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging,” Nanotechnology, vol. 19, no. 17, Article ID 175102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Letters, vol. 5, no. 4, pp. 709–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Letters, vol. 7, no. 7, pp. 1929–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Popovtzer, A. Agrawal, N. A. Kotov et al., “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Letters, vol. 8, no. 12, pp. 4593–4596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Kim, S. Park, H. L. Jae, Y. J. Yong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” Journal of the American Chemical Society, vol. 129, no. 24, pp. 7661–7665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” British Journal of Radiology, vol. 79, no. 939, pp. 248–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, no. 8, pp. 1087–1090, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials, vol. 28, no. 15, pp. 2380–2392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Jain, I. H. ElSayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today, vol. 2, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Letters, vol. 5, no. 5, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small, vol. 1, no. 3, pp. 325–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small, vol. 4, no. 1, pp. 153–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. Hainfeld, M. J. O'Connor, F. A. Dilmanian, D. N. Slatkin, D. J. Adams, and H. M. Smilowitz, “Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions,” British Journal of Radiology, vol. 84, no. 1002, pp. 526–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Chanda, V. Kattumuri, R. Shukla et al., “Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8760–8765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, “Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study,” International Journal of Nanomedicine, vol. 6, pp. 2859–2864, 2011.
  24. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, vol. 11, pp. 55–75, 1951. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Niu, T. Zhu, and Z. Liu, “One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent,” Nanotechnology, vol. 18, no. 32, Article ID 325607, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Frens, “Controlled nucleation for regulation of particle-size in monodisperse gold suspensions,” Nature-Physical Science, vol. 241, no. 105, pp. 20–22, 1973.
  27. W. P. Wuelfing, S. M. Gross, D. T. Miles, and R. W. Murray, “Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte,” Journal of the American Chemical Society, vol. 120, no. 48, pp. 12696–12697, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Todd and D. T. W. Wong, “Epidermal growth factor receptor (EGFR) biology and human oral cancer,” Histology and Histopathology, vol. 14, no. 2, pp. 491–500, 1999. View at Scopus
  29. P. Stanton, S. Richards, J. Reeves et al., “Epidermal growth factor receptor expression by human squamous cell carcinomas of the head and neck, cell lines and xenografts,” British Journal of Cancer, vol. 70, no. 3, pp. 427–433, 1994. View at Scopus
  30. F. Hallouard, N. Anton, P. Choquet, A. Constantinesco, and T. Vandamme, “Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review,” Biomaterials, vol. 31, no. 24, pp. 6249–6268, 2010. View at Publisher · View at Google Scholar · View at Scopus