About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 375093, 8 pages
http://dx.doi.org/10.1155/2013/375093
Research Article

Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles for Thermal Insulation

1College of Civil Engineering, Guangzhou University, Guangzhou 510006, China
2Guangdong Provincial Key Laboratory of Building Energy Efficiency, Guangzhou University, Guangzhou 510006, China

Received 28 December 2012; Accepted 11 April 2013

Academic Editor: Yongcheng Jin

Copyright © 2013 Huijun Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fricke and T. Tillotson, “Aerogels: production, characterization, and applications,” Thin Solid Films, vol. 297, no. 1-2, pp. 212–223, 1997. View at Scopus
  2. A. C. Pierre, “History of aerogels,” in Aerogels Handbook, M. A. Aegerter, Ed., pp. 3–20, Springer, London, UK, 2011.
  3. R. Baetens, B. P. Jelle, and A. Gustavsen, “Aerogel insulation for building applications: a state-of-the-art review,” Energy and Buildings, vol. 43, no. 4, pp. 761–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. Smith, A. Maskara, and U. Boes, “Aerogel-based thermal insulation,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 254–259, 1998. View at Scopus
  5. J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Solar Energy Materials and Solar Cells, vol. 89, no. 2-3, pp. 275–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Woignier, J. Reynes, A. Hafidi Alaoui, I. Beurroies, and J. Phalippou, “Different kinds of structure in aerogels: relationships with the mechanical properties,” Journal of Non-Crystalline Solids, vol. 241, no. 1, pp. 45–52, 1998. View at Scopus
  7. H. Lu, H. Luo, and N. Leventis, “Mechanical characterization of aerogels,” in Aerogel Handbook, pp. 499–535, Springer, New York, NY, USA, 2011.
  8. N. Leventis, C. Sotiriou-Leventis, G. Zhang, and A. M. M. Rawashdeh, “Nanoengineering strong silica aerogels,” Nano Letters, vol. 2, no. 9, pp. 957–960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Liao, H. Wu, Y. Ding, et al., “Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites,” Journal of Sol-Gel Science and Technology, vol. 63, no. 3, pp. 445–456, 2012. View at Publisher · View at Google Scholar
  10. Z. H. Zhang, J. Shen, X. Y. Ni, et al., “Preparation and characterization of hydrophobic silica aerogels doped with fibers,” Rare Metal Materials and Engineering, vol. 37, no. 2, p. 4, 2008.
  11. A. Karout, P. Buisson, A. Perrard, and A. C. Pierre, “Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts,” Journal of Sol-Gel Science and Technology, vol. 36, no. 2, pp. 163–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Feng, C. Zhang, J. Feng, et al., “Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements,” ACS Applied Materials & Interfaces, vol. 3, no. 12, pp. 4796–4803, 2011. View at Publisher · View at Google Scholar
  13. K. Finlay, M. D. Gawryla, and D. A. Schiraldi, “Biologically based fiber-reinforced/clay aerogel composites,” Industrial & Engineering Chemistry Research, vol. 47, no. 3, pp. 615–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Yang, S. Li, Y. Luo, L. Yan, and F. Wang, “Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading,” Carbon, vol. 49, no. 5, pp. 1542–1549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. H. Reneker and A. L. Yarin, “Electrospinning jets and polymer nanofibers,” Polymer, vol. 49, no. 10, pp. 2387–2425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Li, J. T. McCann, Y. Xia, and M. Marquez, “Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes,” Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1861–1869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Greiner and J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angewandte Chemie, vol. 46, no. 30, pp. 5670–5703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Zhang and J. Chang, “Patterning of electrospun fibers using electroconductive templates,” Advanced Materials, vol. 19, no. 21, pp. 3664–3667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Li and Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,” Nano Letters, vol. 4, no. 5, pp. 933–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. T. McCann, D. Li, and Y. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures,” Journal of Materials Chemistry, vol. 15, no. 7, pp. 735–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Li, B. Yalcin, B. N. Nguyen, et al., “Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization,” ACS Applied Materials & Interfaces, vol. 1, no. 11, pp. 2491–2501, 2009. View at Publisher · View at Google Scholar