About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 479109, 8 pages
http://dx.doi.org/10.1155/2013/479109
Research Article

Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA) and Poly(hydroxybutyrate-co-hydroxyvalerate-) Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films

1Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
2IJN-UTM Cardiovascular Engineering Centre (CEC), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
3KALAM, Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received 15 March 2013; Revised 10 April 2013; Accepted 10 April 2013

Academic Editor: In-Kyu Park

Copyright © 2013 Naznin Sultana and Tareef Hayat Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Bell, Tissue Engineering: Current Perspectives, Birkhäuser, Boston, Mass, USA, 1993.
  2. R. P. Lanza, R. S. Langer, and J. Vacanti, Principles of Tissue Engineering, Elsevier/Academic Press, Amsterdam, The Netherlands, 2007.
  3. Z. Li, Y. Su, B. Xie et al., “A tough hydrogel-hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach,” Journal of Materials Chemistry B, vol. 1, no. 12, pp. 1755–1764, 2013. View at Publisher · View at Google Scholar
  4. J. Lacroix, J. Lao, and E. Jallot, “Green and safe in situ templating of bioactive glass scaffolds for bone tissue engineering,” Journal of Materials Chemistry B, vol. 1, no. 13, pp. 1782–1785, 2013. View at Publisher · View at Google Scholar
  5. S. Lalan, I. Pomerantseva, and J. P. Vacanti, “Tissue engineering and its potential impact on surgery,” World Journal of Surgery, vol. 25, no. 11, pp. 1458–1466, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Bastioli, Handbook of Biodegradable Polymers, Rapra Technology, Shrewsbury, UK, 2005.
  7. E. Blümm and A. J. Owen, “Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(l-lactide) blends,” Polymer, vol. 36, no. 21, pp. 4077–4081, 1995. View at Scopus
  8. N. Sultana and M. Wang, “PHBV/PLLA-based composite scaffolds containing nano-sized hydroxyapatite particles for bone tissue engineering,” Journal of Experimental Nanoscience, vol. 3, no. 2, pp. 121–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. X. Ma, R. Zhang, G. Xiao, and R. Franceschi, “Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds,” Journal of Biomedical Materials Research, vol. 54, pp. 284–293, 2001. View at Publisher · View at Google Scholar
  10. B. D. Ratner, BioMaterials Science: An Introduction to Materials in Medicine, Elsevier Academic Press, San Diego, Calif, USA, 2004.
  11. N. Sultana and T. H. Khan, “Factorial study of compressive mechanical properties and primary in vitro osteoblast response of PHBV/PLLA scaffolds,” Journal of Nanomaterials, vol. 2012, Article ID 656914, 8 pages, 2012. View at Publisher · View at Google Scholar
  12. M. Braden, “Water absorption characteristics of dental microfine composite filling materials. II. Experimental materials,” Biomaterials, vol. 5, no. 6, pp. 373–375, 1984. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Deb, M. Braden, and W. Bonfield, “Water absorption characteristics of modified hydroxyapatite bone cements,” Biomaterials, vol. 16, no. 14, pp. 1095–1100, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Sultana and M. Wang, “PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation,” Biofabrication, vol. 4, no. 1, Article ID 015003, 2012. View at Publisher · View at Google Scholar
  15. W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, and D. M. Jia, “Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 103–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Sultana and M. Wang, “Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 7, pp. 2555–2561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Crank and G. S. Park, Eds., Diffusion in Polymers, Academic Press, New York, NY, USA, 1977.
  18. M. Braden and R. L. Clarke, “Water absorption characteristics of dental microfine composite filling materials. I. Proprietary materials,” Biomaterials, vol. 5, no. 6, pp. 369–372, 1984. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Santos, R. L. Clarke, M. Braden, F. Guitian, and K. W. M. Davy, “Water absorption characteristics of dental composites incorporating hydroxyapatite filler,” Biomaterials, vol. 23, no. 8, pp. 1897–1904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, London, UK, 1968.
  21. R. E. Smallman and A. H. W. Ngan, Physical Metallurgy and Advanced Materials, Butterworth-Heinemann; Elsevier, Amsterdam, The Netherlands, 2007.