About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 937019, 6 pages
http://dx.doi.org/10.1155/2013/937019
Research Article

Design and Evaluation of a Three Dimensionally Ordered Macroporous Structure within a Highly Patterned Cylindrical Sn-Ni Electrode for Advanced Lithium Ion Batteries

Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan

Received 12 January 2013; Accepted 1 April 2013

Academic Editor: Huijun Wu

Copyright © 2013 Yongcheng Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Scrosati and J. Garche, “Lithium batteries: status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419–2430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nature Materials, vol. 4, no. 5, pp. 366–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. J. Zhang, “A review of the electrochemical performance of alloy anodes for lithium-ion batteries,” Journal of Power Sources, vol. 196, no. 1, pp. 13–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Shukla and T. P. Kumar, “Materials for next-generation lithium batteries,” Current Science, vol. 94, no. 3, pp. 314–331, 2008. View at Scopus
  5. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, “Insertion electrode materials for rechargeable lithium batteries,” Advanced Materials, vol. 10, no. 10, pp. 725–763, 1998. View at Scopus
  6. R. A. Huggins, “Lithium alloy negative electrodes,” Journal of Power Sources, vol. 81-82, no. 1, pp. 13–19, 1999. View at Scopus
  7. M. Winter and J. O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites,” Electrochimica Acta, vol. 45, no. 1, pp. 31–50, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Larcher, S. Beattie, M. Morcrette, K. Edström, J. C. Jumas, and J. M. Tarascon, “Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries,” Journal of Materials Chemistry, vol. 17, no. 36, pp. 3759–3772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, K. D. Kepler, and R. Benedek, “Intermetallic insertion electrodes derived from NiAs-, Ni2In-, and Li2CuSn-type structures for lithium-ion batteries,” Electrochemistry Communications, vol. 1, no. 1, pp. 111–115, 1999. View at Scopus
  10. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, “Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries,” Electrochemical and Solid-State Letters, vol. 6, no. 10, pp. A218–A220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Mukaibo, T. Momma, and T. Osaka, “Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling,” Journal of Power Sources, vol. 146, no. 1-2, pp. 457–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Tamura, M. Fujimoto, M. Kamino, and S. Fujitani, “Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries,” Electrochimica Acta, vol. 49, no. 12, pp. 1949–1956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Ju, H. C. Jang, Y. C. Kang, and D. W. Kim, “Characteristics of Sn-Ni alloy powders directly prepared by spray pyrolysis,” Journal of Alloys and Compounds, vol. 478, no. 1-2, pp. 177–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Tian, W. Wang, S. Lee, Y. Lee, and R. Yang, “Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces,” Journal of Power Sources, vol. 196, no. 23, pp. 10207–10212, 2011.
  15. H. R. Jung, E. J. Kim, Y. J. Park, and H. C. Shin, “Nickel-tin foam with nanostructured walls for rechargeable lithium battery,” Journal of Power Sources, vol. 196, no. 11, pp. 5122–5127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Nishikawa, K. Dokko, K. Kinoshita, S. W. Woo, and K. Kanamura, “Three-dimensionally ordered macroporous Ni-Sn anode for lithium batteries,” Journal of Power Sources, vol. 189, no. 1, pp. 726–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. W. Woo, N. Okada, M. Kotobuki et al., “Highly patterned cylindrical Ni-Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries,” Electrochimica Acta, vol. 55, no. 27, pp. 8030–8035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kotobuki, N. Okada, and K. Kanamura, “Design of a micro-pattern structure for a three dimensionally macroporous Sn-Ni alloy anode with high areal capacity,” Chemical Communications, vol. 47, no. 21, pp. 6144–6146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Vu, Y. Qian, and A. Stein, “Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special,” Advanced Energy Materials, vol. 2, no. 9, pp. 1056–1085, 2012.